seaborn 数据可视化——分类图_seaborn聚类图怎么显示分类图例-程序员宅基地

技术标签: 其他  数据可视化  

Seaborn的分类图分为三类,将分类变量每个级别的每个观察结果显示出来,显示每个观察分布的抽象表示,以及应用统计估计显示的权重趋势和置信区间:

  • 第一个包括函数swarmplot()和stripplot()
  • 第二个包括函数boxplot()和violinplot()
  • 第三个包括函数barplot()和pointplt()
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style='darkgrid',color_codes=True)
import pandas as pd
import matplotlib as mpl

Other变量&类别变量(striplot和searmplot)

tips
在这里插入图片描述

sns.stripplot(x='day',y='total_bill',data=tips)  #

在这里插入图片描述

体现分布情况

sns.stripplot(x='day',y='total_bill',data=tips,jitter=True)

在这里插入图片描述

函数swarmplot(),它使用避免重叠点的算法将分类轴上的每个散点图点定位

sns.swarmplot(x='day',y='total_bill',data=tips)

在这里插入图片描述

还可以传入hue参数添加多个嵌套的分类变量。高于分类轴上的颜色和位置时冗余的,现在每个都提供有两个变量之一的信息:

sns.swarmplot(x='day',y='total_bill',hue='sex',data=tips)

在这里插入图片描述

类别特征对应的特征分布(boxplot和violinplot)

在某种程度上,类别型数据的可视化可能会无法反应某类中信息的一个分布情况,例如上面的day和total_bill的情况,在很多情况下较难看出究竟哪一天total_bill的好一点,尤其在两个类别中total都相近的时候(Sta,Sun),那此时我们就需要另外一些更好的可视化工具来帮助我们完成这些任务

sns.boxplot(x='day',y='total_bill',data=tips)

在这里插入图片描述
注意: 因为hue是和x,y变量嵌套的,当我们使用hue变量的时候,它会被分割出来并产生"位移",也就是我们看到的下面的一条线被分割成为多条线的情况. 有时为了防止位移,我们可以设置dodge=False可以抵消位移.

sns.boxplot(x="day", y="total_bill", hue="size", data=tips);

在这里插入图片描述

sns.boxplot(x="day", y="total_bill", hue="size", data=tips, dodge=False);

在这里插入图片描述
violinplot(),它结合了箱体图和分布教程中描述的核心密度估计过程.

sns.violinplot(x="day", y="total_bill", hue="time", split=True, data=tips);

在这里插入图片描述
将swarmplot()或者swarmplot()与violinplot()或boxplot()结合使用可以显示每个观察结果以及分布的摘要:

sns.violinplot(x="day", y="total_bill", data=tips, inner=None)
sns.swarmplot(x="day", y="total_bill", data=tips, color="w", alpha=.5);

在这里插入图片描述

类别特征的统计信息

我们不能仅仅只看数据的一个外在的表现,我们需要一些工具将它的一些内在信息(主要是统计信息)反应出来,例如某类数据的总的个数,均值等情况
此处主要介绍barplot(条形图)、countplot与piontplot(点图)

barplot需要注意的是纵轴y默认的是计算的对应cate的均值

sns.barplot(x="sex", y="survived", data=titanic);

在这里插入图片描述

sns.barplot(x='sex',y='survived',hue='class',data=titanic)

在这里插入图片描述
countplot(计数图)
barplot会默认将纵轴计算为均值,这在二分类的时候非常有帮助,因为均值就是为1的概率,但是是不是具有统计意义,我们不能只看概率还得看个数,这个时候我们就得用到countplot函数了,coutplot函数不能同时使用x,y所以如果想要统计某个cate变量对应的变量的个数最好用hue进行分开.例子如下:

sns.countplot(hue='sex',x='survived',data=titanic)

在这里插入图片描述

ns.countplot(hue='sex',x='survived',data=titanic,palette='Greens_d')

在这里插入图片描述
Pointplot
pointplot()函数提供了可视化相同信息的另一种风格。该函数还对另一轴的高度估计值进行编码,而不是显示一个完整的柱型,它只绘制点估计和置信区间。另外,这个函数和Barplot很相似,y特征都是计算对应的概率,不同的是该函数更加丰富,它还会对相同的hue特征进行连接,得到特征的变化曲线.

sns.pointplot(x="sex", y="survived", hue="class", data=titanic);

在这里插入图片描述

sns.pointplot(x="sex", y="survived", hue="class", data=titanic,
              palette={
    "First": "g", "Second": "m", "Third":'b'},
              markers=["^", "o","+"], linestyles=["-", "--",""]);

在这里插入图片描述
绘制“宽格式”数据
  虽然使用“长格式”或“整洁”数据是优选的,但是这些功能也可以应用于各种格式的“宽格式”数据,包括pandas DataFrame或二维numpy数组阵列。这些对象应该直接传递给数据参数:

sns.boxplot(data=iris,orient="h");

在这里插入图片描述
此外,这些函数接受Pandas或numpy对象的向量,而不是DataFrame中的变量

sns.violinplot(x=iris.species, y=iris.sepal_length);

在这里插入图片描述

绘制多层面板分类图

此处我们介绍两个更加高级的方法.这些方法将上面的方法集中在一起,可是随时调用.上述的方法可以通过kind = ""进行随时的切换.

sns.factorplot(x="day", y="total_bill", hue="smoker", data=tips);

在这里插入图片描述

如果我们希望barplot的形式的话,将kind设置为bar即可.为了对比,此处我们也绘制barplot的形式,是不是发现和barplot一样的结果.

sns.factorplot(x="day", y="total_bill", hue="smoker", kind = 'bar', data=tips);

在这里插入图片描述
使用factorplot()的主要优点是很容易调用"facet"展开更多其他分类变量:

sns.factorplot(x="day", y="total_bill", hue="smoker",
               col="time", data=tips, kind="swarm");

在这里插入图片描述

sns.factorplot(x="time", y="total_bill", hue="smoker", col="day", data=tips, kind="box", size=4, aspect=.5);

在这里插入图片描述

sns.factorplot(x="time", y="total_bill", hue="smoker",hue_order=["No","Yes"]
               ,col="day", data=tips, kind="box", size=4, aspect=.5,
              palette="Set3");

在这里插入图片描述

g = sns.PairGrid(tips,
                 x_vars=["smoker", "time", "sex"],
                 y_vars=["total_bill", "tip"],
                 aspect=.75, size=3.5)
g.map(sns.violinplot, palette="pastel");
plt.show()

在这里插入图片描述

g = sns.PairGrid(tips,x_vars=["smoker", "time", "sex"],y_vars=["total_bill", "tip"],aspect=.75, size=3.5)
g.map(sns.barplot, palette="pastel");
plt.show()

在这里插入图片描述

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_34219959/article/details/102717564

智能推荐

没有U盘Win10电脑下如何使用本地硬盘安装Ubuntu20.04(单双硬盘都行)_没有u盘怎么装ubuntu-程序员宅基地

文章浏览阅读3.6k次,点赞2次,收藏2次。DELL7080台式机两块硬盘。_没有u盘怎么装ubuntu

【POJ 3401】Asteroids-程序员宅基地

文章浏览阅读32次。题面Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N grid (1 <= N <= 500). The grid contains K asteroids (1 <= K <= 10,000), which are conv...

工业机器视觉系统的构成与开发过程(理论篇—1)_工业机器视觉系统的构成与开发过程(理论篇—1-程序员宅基地

文章浏览阅读2.6w次,点赞21次,收藏112次。机器视觉则主要是指工业领域视觉的应用研究,例如自主机器人的视觉,用于检测和测量的视觉系统等。它通过在工业领域将图像感知、图像处理、控制理论与软件、硬件紧密结合,并研究解决图像处理和计算机视觉理论在实际应用过程中的问题,以实现高效的运动控制或各种实时操作。_工业机器视觉系统的构成与开发过程(理论篇—1

plt.legend的用法-程序员宅基地

文章浏览阅读5.9w次,点赞32次,收藏58次。legend 传奇、图例。plt.legend()的作用:在plt.plot() 定义后plt.legend() 会显示该 label 的内容,否则会报error: No handles with labels found to put in legend.plt.plot(result_price, color = 'red', label = 'Training Loss') legend作用位置:下图红圈处。..._plt.legend

深入理解 C# .NET Core 中 async await 异步编程思想_netcore async await-程序员宅基地

文章浏览阅读2.2k次,点赞3次,收藏11次。深入理解 C# .NET Core 中 async await 异步编程思想引言一、什么是异步?1.1 简单实例(WatchTV并行CookCoffee)二、深入理解(异步)2.1 当我需要异步返回值时,怎么处理?2.2 充分利用异步并行的高效性async await的秘密引言很久没来CSDN了,快小半年了一直在闲置,也写不出一些带有思想和深度的文章;之前就写过一篇关于async await 的异步理解 ,现在回顾,真的不要太浅和太陋,让人不忍直视!好了,废话不再啰嗦,直入主题:一、什么是异步?_netcore async await

IntelliJ IDEA设置类注释和方法注释带作者和日期_idea作者和日期等注释-程序员宅基地

文章浏览阅读6.5w次,点赞166次,收藏309次。当我看到别人的类上面的多行注释是是这样的:这样的:这样的:好装X啊!我也想要!怎么办呢?往下瞅:跟着我左手右手一个慢动作~~~File--->Settings---->Editor---->File and Code Templates --->Includes--->File Header:之后点applay--..._idea作者和日期等注释

随便推点

发行版Linux和麒麟操作系统下netperf 网络性能测试-程序员宅基地

文章浏览阅读175次。Netperf是一种网络性能的测量工具,主要针对基于TCP或UDP的传输。Netperf根据应用的不同,可以进行不同模式的网络性能测试,即批量数据传输(bulk data transfer)模式和请求/应答(request/reponse)模式。工作原理Netperf工具以client/server方式工作。server端是netserver,用来侦听来自client端的连接,c..._netperf 麒麟

万字长文详解 Go 程序是怎样跑起来的?| CSDN 博文精选-程序员宅基地

文章浏览阅读1.1k次,点赞2次,收藏3次。作者| qcrao责编 | 屠敏出品 | 程序员宅基地刚开始写这篇文章的时候,目标非常大,想要探索 Go 程序的一生:编码、编译、汇编、链接、运行、退出。它的每一步具体如何进行,力图弄清 Go 程序的这一生。在这个过程中,我又复习了一遍《程序员的自我修养》。这是一本讲编译、链接的书,非常详细,值得一看!数年前,我第一次看到这本书的书名,就非常喜欢。因为它模仿了周星驰喜剧..._go run 每次都要编译吗

C++之istringstream、ostringstream、stringstream 类详解_c++ istringstream a >> string-程序员宅基地

文章浏览阅读1.4k次,点赞4次,收藏2次。0、C++的输入输出分为三种:(1)基于控制台的I/O (2)基于文件的I/O (3)基于字符串的I/O 1、头文件[cpp] view plaincopyprint?#include 2、作用istringstream类用于执行C++风格的字符串流的输入操作。 ostringstream类用_c++ istringstream a >> string

MySQL 的 binglog、redolog、undolog-程序员宅基地

文章浏览阅读2k次,点赞3次,收藏14次。我们在每个修改的地方都记录一条对应的 redo 日志显然是不现实的,因此实现方式是用时间换空间,我们在数据库崩了之后用日志还原数据时,在执行这条日志之前,数据库应该是一个一致性状态,我们用对应的参数,执行固定的步骤,修改对应的数据。1,MySQL 就是通过 undolog 回滚日志来保证事务原子性的,在异常发生时,对已经执行的操作进行回滚,回滚日志会先于数据持久化到磁盘上(因为它记录的数据比较少,所以持久化的速度快),当用户再次启动数据库的时候,数据库能够通过查询回滚日志来回滚将之前未完成的事务。_binglog

我的第一个Chrome小插件-基于vue开发的flexbox布局CSS拷贝工具_chrome css布局插件-程序员宅基地

文章浏览阅读3k次。概述之前介绍过 移动Web开发基础-flex弹性布局(兼容写法) 里面有提到过想做一个Chrome插件,来生成flexbox布局的css代码直接拷贝出来用。最近把这个想法实现了,给大家分享下。play-flexbox插件介绍play-flexbox一秒搞定flexbox布局,可直接预览效果,拷贝CSS代码快速用于页面重构。 你也可以通过点击以下链接(codepen示例)查_chrome css布局插件

win10下安装TensorFlow-gpu的流程(包括cuda、cuDnn下载以及安装问题)-程序员宅基地

文章浏览阅读308次。我自己的配置是GeForce GTX 1660 +CUDA10.0+CUDNN7.6.0 + TensorFlow-GPU 1.14.0Win10系统安装tensorflow-gpu(按照步骤一次成功)https://blog.csdn.net/zqxdsy/article/details/103152190环境配置——win10下TensorFlow-GPU安装(GTX1660 SUPER+CUDA10+CUDNN7.4)https://blog.csdn.net/jiDxiaohuo/arti