【风电功率预测】海洋捕食算法MPA优化BP神经网络风电功率预测【含Matlab源码 3770期】-程序员宅基地

技术标签: matlab  Matlab神经网络预测与分类 (进阶版)  

博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
个人主页:海神之光
代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

一、海洋捕食算法MPA优化BP神经网络风电功率预测

1 海洋捕食算法
海洋捕食算法(Marine Predators Algorithm,MPA)是一种受到海洋捕食行为启发的群体智能优化算法。它模拟了海洋生态系统中的捕食行为,通过个体之间的相互作用和信息交流来寻找最优解。

海洋捕食算法的基本原理是将问题转化为一组个体在搜索空间中的位置,这些个体被称为捕食者和猎物。捕食者根据自身适应度和周围猎物的信息选择最佳的位置,而猎物则根据自身适应度和周围捕食者的信息选择逃避或者被捕食的策略。

海洋捕食算法的主要步骤如下:
(1)初始化种群:随机生成一组捕食者和猎物个体,并为每个个体分配初始位置和速度。
(2)评估适应度:根据问题的优化目标,计算每个个体的适应度值。
(3)更新位置和速度:根据捕食者和猎物个体之间的相互作用和信息交流,更新每个个体的位置和速度。
(4)选择最优解:根据适应度值,选择出最优的解决方案作为当前的最优解。
(5)终止条件判断:判断是否满足终止条件,如果满足则结束算法,否则回到第3步继续迭代。
海洋捕食算法具有一定的全局搜索能力和收敛性能,适用于解决各种优化问题,如函数优化、参数优化、组合优化等。它在某些问题上能够提供较好的性能和效果。

2 BP神经网络
2.1 BP神经网络的结构组成
BP神经网络结构组成:2输入1输出,5个隐含层的,也称为2-5-1网络结构;
Neural Network:神经网络
Input:输入
Hidden LayerOutput Layer:隐藏层输出层
Output Layer:输出层
Output :输出
在这里插入图片描述
2.2 BP神经网络训练界面的参数
2.2.1 BP神经网络算法
Algorithms:算法
Data Division:Random(divider and) 数据划分:随机(除数和)
Training:Levenberg-Marquardt(train lm) 训练:表示训练采用的方法
Performance:Mean Squared Error(mse) 性能:均方误差(mse) 用均方误差衡量网络性能
Calculations:MEX 计算方式:MEX

2.2.2 BP神经网络进程
Progress 进程
Epoch: 训练次数
Time: 训练时间
Performance: 网络性能
Gradient: 梯度算子
Mu: 误差精度
Validation Checks: 泛化性( 表示BP神经网络在训练过程中,如果均方误差(MSE)连续6次不降反升,则网络停止训练)

2.2.3 BP神经网络情节
Plots 绘图
Performance 网络性能
Training State 训练阶段参数变化情况
Regression 相关性分析

2.3 BP神经网络预测步骤
(1)读取数据
(2)设置训练数据和预测数据
(3)训练样本数据归一化
(4)构建BP神经网络
(5)网络参数配置(训练次数,学习速率,训练目标最小误差.等)
(5)BP神经网络训练
(6)测试样本归一化
(7)BP神经网络预测
(8)预测结果反归一化与误差计算
(8)验证集的真实值与预测值误差比较

2.4 BP神经网络预测案例代码

%% 此程序为matlab编程实现的BP神经网络
% 清空环境变量
clear
close all
clc

%%第一步 读取数据
input=randi([1 20],200,2);  %载入输入数据
output=input(:,1)+input(:,2);  %载入输出数据

%% 第二步 设置训练数据和预测数据
input_train = input(1:190,:)';
output_train =output(1:190,:)';
input_test = input(191:200,:)';
output_test =output(191:200,:)';
%节点个数
inputnum=2; % 输入层节点数量
hiddennum=5;% 隐含层节点数量
outputnum=1; % 输出层节点数量
%% 第三本 训练样本数据归一化
[inputn,inputps]=mapminmax(input_train);%归一化到[-1,1]之间,inputps用来作下一次同样的归一化
[outputn,outputps]=mapminmax(output_train);
%% 第四步 构建BP神经网络
net=newff(inputn,outputn,hiddennum,{
    'tansig','purelin'},'trainlm');% 建立模型,传递函数使用purelin,采用梯度下降法训练

W1= net. iw{
    1, 1};%输入层到中间层的权值
B1 = net.b{
    1};%中间各层神经元阈值

W2 = net.lw{
    2,1};%中间层到输出层的权值
B2 = net. b{
    2};%输出层各神经元阈值

%% 第五步 网络参数配置( 训练次数,学习速率,训练目标最小误差等)
net.trainParam.epochs=1000;         % 训练次数,这里设置为1000次
net.trainParam.lr=0.01;                   % 学习速率,这里设置为0.01
net.trainParam.goal=0.00001;                    % 训练目标最小误差,这里设置为0.00001

%% 第六步 BP神经网络训练
net=train(net,inputn,outputn);%开始训练,其中inputn,outputn分别为输入输出样本

%% 第七步 测试样本归一化
inputn_test=mapminmax('apply',input_test,inputps);% 对样本数据进行归一化

%% 第八步 BP神经网络预测
an=sim(net,inputn_test); %用训练好的模型进行仿真

%% 第九步 预测结果反归一化与误差计算     
test_simu=mapminmax('reverse',an,outputps); %把仿真得到的数据还原为原始的数量级
error=test_simu-output_test;      %预测值和真实值的误差

%%第十步 真实值与预测值误差比较
figure('units','normalized','position',[0.119 0.2 0.38 0.5])
plot(output_test,'bo-')
hold on
plot(test_simu,'r*-')
hold on
plot(error,'square','MarkerFaceColor','b')
legend('期望值','预测值','误差')
xlabel('数据组数')
ylabel('样本值')
title('BP神经网络测试集的预测值与实际值对比图')

[c,l]=size(output_test);
MAE1=sum(abs(error))/l;
MSE1=error*error'/l;
RMSE1=MSE1^(1/2);
disp(['-----------------------误差计算--------------------------'])
disp(['隐含层节点数为',num2str(hiddennum),'时的误差结果如下:'])
disp(['平均绝对误差MAE为:',num2str(MAE1)])
disp(['均方误差MSE为:       ',num2str(MSE1)])
disp(['均方根误差RMSE为:  ',num2str(RMSE1)])

二、部分源代码

%% 基于海洋捕食优化的BP神经网络预测
clear all
clc
close all
warning off;
%% 导入数据
load data
% 训练集——1900个样本
P_train=input(1:1900,:)‘;
T_train=output(1:1900);
% 测试集——100个样本
P_test=input(1901:2000,:)’;
T_test=output(1901:2000);

%% 归一化
% 训练集
[Pn_train,inputps] = mapminmax(P_train,-1,1);
Pn_test = mapminmax(‘apply’,P_test,inputps);
% 测试集
[Tn_train,outputps] = mapminmax(T_train,-1,1);
Tn_test = mapminmax(‘apply’,T_test,outputps);
%% 构造网络结构
%创建神经网络
inputnum = 2; %inputnum 输入层节点数 4维特征
hiddennum = 10; %hiddennum 隐含层节点数
outputnum = 1; %outputnum 隐含层节点数
%% BP
net = newff( minmax(Pn_train) , [hiddennum outputnum] , { ‘logsig’ ‘purelin’ } , ‘traingdx’ ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;
net = train( net, Pn_train , Tn_train ) ;
%测试集预测
Y = sim( net , Pn_test );
error = Y - Tn_test;

%% 构造海洋捕食优化器
popsize = 20;%种群数量
Max_iteration = 50;%最大迭代次数
lb = -2;%权值阈值下边界
ub = 2;%权值阈值上边界
% inputnum * hiddennum + hiddennumoutputnum 为权值的个数
% hiddennum + outputnum 为阈值的个数
dim = inputnum * hiddennum + hiddennum
outputnum + hiddennum + outputnum ;% inputnum * hiddennum + hiddennum*outputnum维度
fobj = @(x)funBP(x,inputnum,hiddennum,outputnum,Pn_train,Tn_train,Pn_test,Tn_test);
[Best_score,Best_pos,MPA_cg_curve]=MPA(popsize,Max_iteration,lb,ub,dim,fobj);
[fitness,Y_MPA ] = funBP(Best_pos,inputnum,hiddennum,outputnum,Pn_train,Tn_train,Pn_test,Tn_test);
figure
plot(MPA_cg_curve,‘Color’,‘r’)
title(‘Objective space’)
xlabel(‘Iteration’);
ylabel(‘Best score obtained so far’);
legend(‘MPA’)
grid on;
%测试集预测

%% 作图
figure
plot(Tn_test,‘k-p’,‘linewidth’,1)
hold on
plot(Y,‘c-s’,‘linewidth’,1,‘markerfacecolor’,‘b’)
hold on
plot(Y_MPA,‘g-o’,‘linewidth’,1,‘markerfacecolor’,‘r’)
legend(‘真实值’,‘BP预测值’,‘海洋捕食算法优化BP预测值’)
xlabel(‘测试样本编号’)
ylabel(‘指标值’)
title(‘海洋捕食算法优化前后的BP神经网络预测值和真实值对比图’)

error = Y_MPA - Tn_test;
% 均方误差
E1 = mse(error);
figure
plot(error,‘b:o’)
title(‘海洋捕食BP神经网络预测得到的误差分布’)
xlabel(‘index’)
ylabel(‘误差’)
grid on
disp([‘海洋捕食BP神经网络得到的MSE:’,num2str(E1)])

三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]赵侃,师芸,牛敏杰,王虎勤.基于改进麻雀搜索算法优化BP神经网络的PM2.5浓度预测[J].测绘通报. 2022(10)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/KeepingMatlab/article/details/136335074

智能推荐

【史上最易懂】马尔科夫链-蒙特卡洛方法:基于马尔科夫链的采样方法,从概率分布中随机抽取样本,从而得到分布的近似_马尔科夫链期望怎么求-程序员宅基地

文章浏览阅读1.3k次,点赞40次,收藏19次。虽然你不能直接计算每个房间的人数,但通过马尔科夫链的蒙特卡洛方法,你可以从任意状态(房间)开始采样,并最终收敛到目标分布(人数分布)。然后,根据一个规则(假设转移概率是基于房间的人数,人数较多的房间具有较高的转移概率),你随机选择一个相邻的房间作为下一个状态。比如在巨大城堡,里面有很多房间,找到每个房间里的人数分布情况(每个房间被访问的次数),但是你不能一次进入所有的房间并计数。但是,当你重复这个过程很多次时,你会发现你更有可能停留在人数更多的房间,而在人数较少的房间停留的次数较少。_马尔科夫链期望怎么求

linux以root登陆命令,su命令和sudo命令,以及限制root用户登录-程序员宅基地

文章浏览阅读3.9k次。一、su命令su命令用于切换当前用户身份到其他用户身份,变更时须输入所要变更的用户帐号与密码。命令su的格式为:su [-] username1、后面可以跟 ‘-‘ 也可以不跟,普通用户su不加username时就是切换到root用户,当然root用户同样可以su到普通用户。 ‘-‘ 这个字符的作用是,加上后会初始化当前用户的各种环境变量。下面看下加‘-’和不加‘-’的区别:root用户切换到普通..._限制su root登陆

精通VC与Matlab联合编程(六)_精通vc和matlab联合编程 六-程序员宅基地

文章浏览阅读1.2k次。精通VC与Matlab联合编程(六)作者:邓科下载源代码浅析VC与MATLAB联合编程浅析VC与MATLAB联合编程浅析VC与MATLAB联合编程浅析VC与MATLAB联合编程浅析VC与MATLAB联合编程  Matlab C/C++函数库是Matlab扩展功能重要的组成部分,包含了大量的用C/C++语言重新编写的Matlab函数,主要包括初等数学函数、线形代数函数、矩阵操作函数、数值计算函数_精通vc和matlab联合编程 六

Asp.Net MVC2中扩展ModelMetadata的DescriptionAttribute。-程序员宅基地

文章浏览阅读128次。在MVC2中默认并没有实现DescriptionAttribute(虽然可以找到这个属性,通过阅读MVC源码,发现并没有实现方法),这很不方便,特别是我们使用EditorForModel的时候,我们需要对字段进行简要的介绍,下面来扩展这个属性。新建类 DescriptionMetadataProvider然后重写DataAnnotationsModelMetadataPro..._asp.net mvc 模型description

领域模型架构 eShopOnWeb项目分析 上-程序员宅基地

文章浏览阅读1.3k次。一.概述  本篇继续探讨web应用架构,讲基于DDD风格下最初的领域模型架构,不同于DDD风格下CQRS架构,二者架构主要区别是领域层的变化。 架构的演变是从领域模型到C..._eshoponweb

Springboot中使用kafka_springboot kafka-程序员宅基地

文章浏览阅读2.6w次,点赞23次,收藏85次。首先说明,本人之前没用过zookeeper、kafka等,尚硅谷十几个小时的教程实在没有耐心看,现在我也不知道分区、副本之类的概念。用kafka只是听说他比RabbitMQ快,我也是昨天晚上刚使用,下文中若有讲错的地方或者我的理解与它的本质有偏差的地方请包涵。此文背景的环境是windows,linux流程也差不多。 官网下载kafka,选择Binary downloads Apache Kafka 解压在D盘下或者什么地方,注意不要放在桌面等绝对路径太长的地方 打开conf_springboot kafka

随便推点

VS2008+水晶报表 发布后可能无法打印的解决办法_水晶报表 不能打印-程序员宅基地

文章浏览阅读1k次。编好水晶报表代码,用的是ActiveX模式,在本机运行,第一次运行提示安装ActiveX控件,安装后,一切正常,能正常打印,但发布到网站那边运行,可能是一闪而过,连提示安装ActiveX控件也没有,甚至相关的功能图标都不能正常显示,再点"打印图标"也是没反应解决方法是: 1.先下载"PrintControl.cab" http://support.businessobjects.c_水晶报表 不能打印

一. UC/OS-Ⅱ简介_ucos-程序员宅基地

文章浏览阅读1.3k次。绝大部分UC/OS-II的源码是用移植性很强的ANSI C写的。也就是说某产品可以只使用很少几个UC/OS-II调用,而另一个产品则使用了几乎所有UC/OS-II的功能,这样可以减少产品中的UC/OS-II所需的存储器空间(RAM和ROM)。UC/OS-II是为嵌入式应用而设计的,这就意味着,只要用户有固化手段(C编译、连接、下载和固化), UC/OS-II可以嵌入到用户的产品中成为产品的一部分。1998年uC/OS-II,目前的版本uC/OS -II V2.61,2.72。1.UC/OS-Ⅱ简介。_ucos

python自动化运维要学什么,python自动化运维项目_运维学python该学些什么-程序员宅基地

文章浏览阅读614次,点赞22次,收藏11次。大家好,本文将围绕python自动化运维需要掌握的技能展开说明,python自动化运维从入门到精通是一个很多人都想弄明白的事情,想搞清楚python自动化运维快速入门 pdf需要先了解以下几个事情。这篇文章主要介绍了一个有趣的事情,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获,下面让小编带着大家一起了解一下。_运维学python该学些什么

解决IISASP调用XmlHTTP出现msxml3.dll (0x80070005) 拒绝访问的错误-程序员宅基地

文章浏览阅读524次。2019独角兽企业重金招聘Python工程师标准>>> ..._hotfix for msxml 4.0 service pack 2 - kb832414

python和易语言的脚本哪门更实用?_易语言还是python适合辅助-程序员宅基地

文章浏览阅读546次。python和易语言的脚本哪门更实用?_易语言还是python适合辅助

redis watch使用场景_详解redis中的锁以及使用场景-程序员宅基地

文章浏览阅读134次。详解redis中的锁以及使用场景,指令,事务,分布式,命令,时间详解redis中的锁以及使用场景易采站长站,站长之家为您整理了详解redis中的锁以及使用场景的相关内容。分布式锁什么是分布式锁?分布式锁是控制分布式系统之间同步访问共享资源的一种方式。为什么要使用分布式锁?​ 为了保证共享资源的数据一致性。什么场景下使用分布式锁?​ 数据重要且要保证一致性如何实现分布式锁?主要介绍使用redis来实..._redis setnx watch

推荐文章

热门文章

相关标签