platform驱动管理机制_platform_driver pm-程序员宅基地

技术标签: struct  io  linux  resources  alignment  linux驱动  数据结构  

============================================
作者:yuanlulu
http://blog.csdn.net/yuanlulu


版权没有,但是转载请保留此段声明
============================================

第1章 platform驱动管理机制

Linux2.6内核引入了一套新的驱动管理机制:Platform_device  Platform_driver 。设备用Platform_device表示,驱动用Platform_driver 表示,另外设备描述了使用的资源,驱动则负责电源管理和使用资源。由于驱动和资源之间的独立,使得程序的可移植性和可扩展性大大增强。

1.1      platform_device

1.1.1  数据结构

plarform设备用platform_device来表示,如程序清单 1.1所示。


程序清单 1.1  platform_device

/* include/linux/platform_device.h */

struct platform_device {

         constchar            *name;                                                                                                                               

         int                        id;                                                                                                                                       

         structdevice        dev;                                                                                                                                    

         u32                      num_resources;                                                                                                                  

         structresource     * resource;                                                                                                                          

};

各个成员的解释如下:

name指向设备的名字字符串,这个名字用来和同名的platform_driver进行匹配。

id是设备编号(如果有多个同类设备的话),如果只有一个则需设为-1

设备模型用到的成员。

使用到的资源的数量。

资源数组头地址。

最后一个成员resource指向此设备用到的资源的数组,struct resource的定义如程序清单 1.2所示。


程序清单 1.2  struct resource

/* include/linux/ioport.h */

struct resource {

         resource_size_t           start;                                                                                                                          

         resource_size_t           end;                                                                                                                           

         constchar                    *name;                                                                                                                      

         unsignedlong              flags;                                                                                                                         

         structresource             *parent, *sibling,*child;                                                                                           

};

 

#define IORESOURCE_BITS                                    0x000000ff                  /*Bus-specific bits */

 

#define IORESOURCE_IO                                        0x00000100        /* Resource type */

#define IORESOURCE_MEM                                   0x00000200

#define IORESOURCE_IRQ                                     0x00000400

#define IORESOURCE_DMA                                   0x00000800

 

#define IORESOURCE_PREFETCH                        0x00001000        /* No side effects */

#define IORESOURCE_READONLY                      0x00002000

#define IORESOURCE_CACHEABLE                    0x00004000

#define IORESOURCE_RANGELENGTH              0x00008000

#define IORESOURCE_SHADOWABLE                0x00010000

 

#define IORESOURCE_SIZEALIGN                       0x00020000        /* size indicates alignment */

#define IORESOURCE_STARTALIGN                    0x00040000        /* start field is alignment */

 

#define IORESOURCE_DISABLED                        0x10000000

#define IORESOURCE_UNSET                               0x20000000

#define IORESOURCE_AUTO                                 0x40000000

#define IORESOURCE_BUSY                                 0x80000000        /* Driver has marked this resource busy*/


各个成员的解释如下:

start记录资源范围的起始值,比如一段内存空间的首地址。

end记录资源范围的结束位置。

name资源的名字。

flags用来记录资源类型以及是否可写、忙碌等信息,各位的定义如程序清单 1.2所示。

分别记录资源树的父节点、兄弟节点和子节点。

1.1.2   注册流程

注册platform_device有两个接口platform_add_devicesplatform_device_register,它们的代码如所示。


程序清单1.3  platform_device注册接口

/* drivers/base/platform.c */

int platform_add_devices(struct platform_device**devs, int num)

{

         int i,ret = 0;

 

         for (i =0; i < num; i++) {

                   ret= platform_device_register(devs[i]);

                   if(ret) {

                            while(--i >= 0)

                                     platform_device_unregister(devs[i]);

                            break;

                   }

         }

 

         returnret;

}

 

int platform_device_register(struct platform_device*pdev)

{

         device_initialize(&pdev->dev);

         returnplatform_device_add(pdev);

}

platform_add_devices注册多个设备,循环调用了platform_device_registerplatform_device_register只有两步,第一步初始化platform_devicedev成员,接下来调用platform_device_add函数,它的实现如程序清单 1.4所示。


程序清单 1.4  platform_device_add

/* drivers/base/platform.c */

int platform_device_add(struct platform_device *pdev)

{

         int i,ret = 0;

 

         if(!pdev)

                   return-EINVAL;

 

         if(!pdev->dev.parent)                                                                                                                                    

                   pdev->dev.parent= &platform_bus;

 

         pdev->dev.bus= &platform_bus_type;

 

         if(pdev->id != -1)                                                                                                                                          

                   snprintf(pdev->dev.bus_id,BUS_ID_SIZE, "%s.%d", pdev->name,

                             pdev->id);

         else

                   strlcpy(pdev->dev.bus_id,pdev->name, BUS_ID_SIZE);

 

         for (i =0; i < pdev->num_resources; i++) {                                                                                                   

                   structresource *p, *r = &pdev->resource[i];

 

                   if(r->name == NULL)

                            r->name= pdev->dev.bus_id;

 

                   p= r->parent;

                   if(!p) {                                                                                                                                                  

                            if(r->flags & IORESOURCE_MEM)

                                     p= &iomem_resource;

                            elseif (r->flags & IORESOURCE_IO)

                                     p= &ioport_resource;

                   }

 

                   if(p && insert_resource(p, r)) {                                                                                                            

                            printk(KERN_ERR

                                   "%s: failed to claim resource%d/n",

                                   pdev->dev.bus_id, i);

                            ret= -EBUSY;

                            gotofailed;

                   }

         }

 

         pr_debug("Registeringplatform device '%s'. Parent at %s/n",

                    pdev->dev.bus_id,pdev->dev.parent->bus_id);

 

         ret =device_add(&pdev->dev);                                                                                                                     

         if (ret== 0)

                   returnret;

 

 failed:

         while(--i >= 0)

                   if(pdev->resource[i].flags & (IORESOURCE_MEM|IORESOURCE_IO))

                            release_resource(&pdev->resource[i]);

         returnret;

}


代码的解释如下:

处初始化设备的父设备和总线类型。

处填写该设备在设备模型中的名字:如果编号不为-1则名字为设备名加编号,否则只包含设备名。

处循环处理设备的每一个资源。

如果父资源指针为空,则为IO端口和IO内存设置默认的父资源节点。这里看到,中断资源和DMA资源并不设置父节点,因为内核没有为这两类资源建立资源树,它们的使用情况使用另外的方式记录。

如果有父资源节点,则将资源注册进内核资源树(仅仅针对IO端口和IO内存)。

       将本设备注册进内核的驱动模型中。

1.2     platform_driver

platform驱动用platform_driver来表示,它的定义如程序清单 1.5所示。


程序清单 1.5  platform_driver

/* include/linux/platform_device.h */

struct platform_driver {

         int(*probe)(struct platform_device *);

         int(*remove)(struct platform_device *);

         void(*shutdown)(struct platform_device *);

         int(*suspend)(struct platform_device *, pm_message_t state);

         int(*suspend_late)(struct platform_device *, pm_message_t state);

         int(*resume_early)(struct platform_device *);

         int(*resume)(struct platform_device *);

         structpm_ext_ops *pm;

         structdevice_driver driver;

};

platform_driver的各个成员主要用来进行电源管理。其成员driver.name用来匹配支持的设备,它支持的platfirm_device必须使用这个名字。当有platform_device和该驱动名字匹配时,probe成员会被调用,传入匹配的设备指针。解除绑定时remove被调用。

platform_driver的注册较为简单,如程序清单 1.6所示。


程序清单 1.6  platform_driver_register

/* drivers/base/platform.c */

int platform_driver_register(struct platform_driver*drv)

{

         drv->driver.bus= &platform_bus_type;

         if(drv->probe)

                   drv->driver.probe= platform_drv_probe;

         if(drv->remove)

                   drv->driver.remove= platform_drv_remove;

         if (drv->shutdown)

                   drv->driver.shutdown= platform_drv_shutdown;

         if(drv->suspend)

                   drv->driver.suspend= platform_drv_suspend;

         if(drv->resume)

                   drv->driver.resume= platform_drv_resume;

         if(drv->pm)

                   drv->driver.pm= &drv->pm->base;

         returndriver_register(&drv->driver);

}

注册过程就是将platform_driver的成员函数赋给driver成员的成员函数指针,然后注册进设备模型。

1.3     platform使用例子

1.3.1  lpc32xxi2c

platform提供了设备的资源视图,可以比较集中的管理资源的使用。在Linux内核硬件相关的文件当中,Linux使用platform机制定义了很多驱动使用的资源,可以在一个文件中看到多个驱动的资源分配情况,有利于资源的规划和分配。对于smartarm3250来说,这个文件是arch/arm/mach-lpc32xx/arch-lpc32xx.c,这个文件定义了看门狗、rtci2cspi等各种总线/设备用到的资源,定义了这些模块的驱动platform_device,对于i2c的定义如程序清单 1.7所示。


程序清单 1.7  i2cplatform_device

/* arch/arm/mach-lpc32xx/arch-lpc32xx.c */

#if defined (CONFIG_MACH_LPC32XX_I2C0_ENABLE)

static struct i2c_pnx_algo_data lpc32xx_algo_data0 = {

         .base =I2C1_BASE,

         .irq =IRQ_I2C_1,

};

static struct i2c_adapter lpc32xx_adapter0 = {

         .name =I2C_CHIP_NAME "0",

         .algo_data= &lpc32xx_algo_data0,

};

static struct i2c_pnx_data i2c0_data = {

         .suspend= i2c_lpc32xx_suspend,

         .resume= i2c_lpc32xx_resume,

         .calculate_input_freq= calculate_input_freq,

         .set_clock_run= set_clock_run,

         .set_clock_stop= set_clock_stop,

         .adapter= &lpc32xx_adapter0,

};

static struct platform_device i2c0_device = {

         .name ="pnx-i2c",

         .id = 0,

         .dev = {

                   .platform_data= &i2c0_data,

         },

};

#endif


这里资源的传递没有通过struct resource来传递,而是使用了struct platform_devicedev. platform_data传递过去的,这种用法不多见,其它模块的资源通过struct platform_deviceresource成员来传递。可见这里已经定义好了设备的一切资源。

lpc32xxplatform_device是通过phy3250_board_init()->lpc32xx_init()->platform_add_devices()来注册的。而phy3250_board_init是在硬件架构的初始化时被调用的。

上面的内容是platform_device的定义,完整的驱动模型包含驱动和设备两部分。对应的platform_driver定义在driver/i2c/busses/i2c-pnx.c,如所示。


程序清单1.8  lpc32xxplatform_driver

/* driver/i2c/busses/i2c-pnx.c */

static struct platform_driver i2c_pnx_driver = {

         .driver= {

                   .name= "pnx-i2c",

                   .owner= THIS_MODULE,

         },

         .probe =i2c_pnx_probe,

         .remove= __devexit_p(i2c_pnx_remove),

         .suspend= i2c_pnx_controller_suspend,

         .resume= i2c_pnx_controller_resume,

};

 

static int __init i2c_adap_pnx_init(void)

{

         returnplatform_driver_register(&i2c_pnx_driver);

}

 

static void __exit i2c_adap_pnx_exit(void)

{

         platform_driver_unregister(&i2c_pnx_driver);

}

subsys_initcall(i2c_adap_pnx_init);

module_exit(i2c_adap_pnx_exit);


       可以看到这个驱动的名字和platform_device的名字是一致的,因为名字是它们相互绑定的依据。在Linux设备模型中,当发现新注册的驱动和已经注册的设备符合绑定条件之后,驱动的probe函数将被调用,probe的主要职能是申请设备定义的资源(比如中断和IO内存空间)并初始化设备的硬件,注册设备的其它子系统资源(比如i2c的适配器结构体)。

       由于i2c_adap_pnx_init是在子系统初始化的时候被调用的,因此比platform_device的初始化要晚。

1.3.2  platform驱动的使用总结

最典型的platform应用就是1.3.1节的所示的形式,在一个文件中定义设备的资源和数据结构,在另一个文件的驱动中进行申请和初始化。设备和驱动的绑定由Linux设备模型负责。驱动和设备的分离使得每个驱动可以对应多个同类的设备,资源独立之后可以在不修改设备资源配置的情况下升级驱动模块。

典型的应用是在内核编译之前就定义好了各种平台设备和它们的资源,如果想在驱动模块中定义platform_device并申请资源也是可以的。可以使用以下接口动态申请一个platform_device:


struct platform_device *platform_device_alloc( constchar *name, int id);


进行适当的初始化之后就可以使用platform_device_register()进行注册了。当然也可以直接动态构并注册:


struct platform_device*platform_device_register_simple(

                      const char *name, int id,

                      struct resource *res, unsigned int nres);


       在模块当中定义platform_devicplatform_driver并不是内核文档推荐的用法,因为platform_devic可能被其他模块或者子系统所依赖或引用。当本模块卸载时,其它模块可能还在使用。因此在驱动模块中定义设备是不合适的,因为驱动的职责不包含设备的定义,这违背了Linux设备模型的思想。但是如果保证不会和其它模块产生依赖,使用平台设备可以添加设备电源管理的接口,这对需要低功耗的嵌入式设备具有重大意义。因此如果对功耗没有要求,尽量不要用platform,如果有需求则需要小心使用,如果这个设备比较固定,最好将设备的定义添加到内核中。

1.4     Linux资源树

我们看到Linux的平台设备使用了资源的概念,如程序清单 1.2所示。如程序清单 1.4所示,platform_device注册过程中会将没有设置父节点的IO端口和IO内存资源的父节点指针指向默认的两个节点:ioport_resourceiomem_resource,内核会以倒置的兄弟节点树的形式来记录资源的使用情况。它们的定义如程序清单 1.9所示。


程序清单 1.9  ioport_resourceiomem_resource

/* kernel/resource.c */

struct resource ioport_resource = {

         .name         = "PCI IO",

         .start  = 0,

         .end   = IO_SPACE_LIMIT,

         .flags = IORESOURCE_IO,

};

 

struct resource iomem_resource = {

         .name         = "PCI mem",

         .start  = 0,

         .end   = -1,

         .flags = IORESOURCE_MEM,

};


对于中断和DMA类的资源,内核中并没有相应的资源树。

在使用IO端口和IO内存资源之前,首先要进行申请,也就是从资源树中申请。IO端口空间的申请接口如下所示:


/* include/linux/ioport.h */

#define request_region(start,n,name)    __request_region(&ioport_resource,(start), (n), (name));

#define release_region(start,n)__release_region(&ioport_resource, (start), (n));

static inline int __deprecatedcheck_region(resource_size_t s, resource_size_t n);           

                              

这三个接口分别用来申请一段IO端口资源、释放一段资源和检查一段资源是否被占用。但是最后一个接口是不安全的,不推荐使用,因为检查和申请资源并不是原子的。

IO内存资源的管理接口如下:


#define request_mem_region(start,n,name)__request_region(&iomem_resource, (start), (n), (name));

#define release_mem_region(start,n)     __release_region(&iomem_resource,(start), (n));

#define check_mem_region(start,n)       __check_region(&iomem_resource,(start), (n));


这三个接口的功能分别用来申请一段IO内存资源、释放一段资源和检查一段资源是否被占用。同样check_mem_region也是不安全的。

资源树仅仅用来使用的记录,实际使用IO端口和IO内存之前还要进行物理地址到虚拟地址之间的映射。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/yuanlulu/article/details/6184266

智能推荐

2022黑龙江最新建筑八大员(材料员)模拟考试试题及答案_料账的试题-程序员宅基地

文章浏览阅读529次。百分百题库提供建筑八大员(材料员)考试试题、建筑八大员(材料员)考试预测题、建筑八大员(材料员)考试真题、建筑八大员(材料员)证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。310项目经理部应编制机械设备使用计划并报()审批。A监理单位B企业C建设单位D租赁单位答案:B311对技术开发、新技术和新工艺应用等情况进行的分析和评价属于()。A人力资源管理考核B材料管理考核C机械设备管理考核D技术管理考核答案:D312建筑垃圾和渣土._料账的试题

chatgpt赋能python:Python自动打开浏览器的技巧-程序员宅基地

文章浏览阅读614次。本文由chatgpt生成,文章没有在chatgpt生成的基础上进行任何的修改。以上只是chatgpt能力的冰山一角。作为通用的Aigc大模型,只是展现它原本的实力。对于颠覆工作方式的ChatGPT,应该选择拥抱而不是抗拒,未来属于“会用”AI的人。AI职场汇报智能办公文案写作效率提升教程 专注于AI+职场+办公方向。下图是课程的整体大纲下图是AI职场汇报智能办公文案写作效率提升教程中用到的ai工具。_python自动打开浏览器

Linux中安装JDK-RPM_linux 安装jdk rpm-程序员宅基地

文章浏览阅读545次。Linux中安装JDK-RPM方式_linux 安装jdk rpm

net高校志愿者管理系统-73371,计算机毕业设计(上万套实战教程,赠送源码)-程序员宅基地

文章浏览阅读25次。免费领取项目源码,请关注赞收藏并私信博主,谢谢-高校志愿者管理系统主要功能模块包括页、个人资料(个人信息。修改密码)、公共管理(轮播图、系统公告)、用户管理(管理员、志愿用户)、信息管理(志愿资讯、资讯分类)、活动分类、志愿活动、报名信息、活动心得、留言反馈,采取面对对象的开发模式进行软件的开发和硬体的架设,能很好的满足实际使用的需求,完善了对应的软体架设以及程序编码的工作,采取SQL Server 作为后台数据的主要存储单元,采用Asp.Net技术进行业务系统的编码及其开发,实现了本系统的全部功能。

小米宣布用鸿蒙了吗,小米OV对于是否采用鸿蒙保持沉默,原因是中国制造需要它们...-程序员宅基地

文章浏览阅读122次。原标题:小米OV对于是否采用鸿蒙保持沉默,原因是中国制造需要它们目前华为已开始对鸿蒙系统大规模宣传,不过中国手机四强中的另外三家小米、OPPO、vivo对于是否采用鸿蒙系统保持沉默,甚至OPPO还因此而闹出了一些风波,对此柏铭科技认为这是因为中国制造当下需要小米OV几家继续将手机出口至海外市场。 2020年中国制造支持中国经济渡过了艰难的一年,这一年中国进出口贸易额保持稳步增长的势头,成为全球唯一..._小米宣布用鸿蒙系统

Kafka Eagle_kafka eagle git-程序员宅基地

文章浏览阅读1.3k次。1.Kafka Eagle实现kafka消息监控的代码细节是什么?2.Kafka owner的组成规则是什么?3.怎样使用SQL进行kafka数据预览?4.Kafka Eagle是否支持多集群监控?1.概述在《Kafka 消息监控 - Kafka Eagle》一文中,简单的介绍了 Kafka Eagle这款监控工具的作用,截图预览,以及使用详情。今天_kafka eagle git

随便推点

Eva.js是什么(互动小游戏开发)-程序员宅基地

文章浏览阅读1.1k次,点赞29次,收藏19次。Eva.js 是一个专注于开发互动游戏项目的前端游戏引擎。:Eva.js 提供开箱即用的游戏组件供开发人员立即使用。是的,它简单而优雅!:Eva.js 由高效的运行时和渲染管道 (Pixi.JS) 提供支持,这使得释放设备的全部潜力成为可能。:得益于 ECS(实体-组件-系统)架构,你可以通过高度可定制的 API 扩展您的需求。唯一的限制是你的想象力!_eva.js

OC学习笔记-Objective-C概述和特点_objective-c特点及应用领域-程序员宅基地

文章浏览阅读1k次。Objective-C概述Objective-C是一种面向对象的计算机语言,1980年代初布莱德.考斯特在其公司Stepstone发明Objective-C,该语言是基于SmallTalk-80。1988年NeXT公司发布了OC,他的开发环境和类库叫NEXTSTEP, 1994年NExt与Sun公司发布了标准的NEXTSTEP系统,取名openStep。1996_objective-c特点及应用领域

STM32学习笔记6:TIM基本介绍_stm32 tim寄存器详解-程序员宅基地

文章浏览阅读955次,点赞20次,收藏16次。TIM(Timer)定时器定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断16位计数器、预分频器、自动重装寄存器的时基单元,在 72MHz 计数时钟下可以实现最大 59.65s 的定时,59.65s65536×65536×172MHz59.65s65536×65536×721​MHz不仅具备基本的定时中断功能,而且还包含内外时钟源选择、输入捕获、输出比较、编码器接口、主从触发模式等多种功能。_stm32 tim寄存器详解

前端基础语言HTML、CSS 和 JavaScript 学习指南_艾编程学习资料-程序员宅基地

文章浏览阅读1.5k次。对于任何有兴趣学习前端 Web 开发的人来说,了解 HTML、CSS 和JavaScript 之间的区别至关重要。这三种前端语言都是您访问过的每个网站的用户界面构建块。而且,虽然每种语言都有不同的功能重点,但它们都可以共同创建令人兴奋的交互式网站,让用户保持参与。因此,您会发现学习所有三种语言都很重要。如果您有兴趣从事前端开发工作,可以通过多种方式学习这些语言——在艾编程就可以参与到学习当中来。在本文中,我们将回顾每种语言的特征、它们如何协同工作以及您可以在哪里学习它们。HTML vs C._艾编程学习资料

三维重构(10):PCL点云配准_局部点云与全局点云配准-程序员宅基地

文章浏览阅读2.8k次。点云配准主要针对点云的:不完整、旋转错位、平移错位。因此要得到完整点云就需要对局部点云进行配准。为了得到被测物体的完整数据模型,需要确定一个合适的坐标系变换,将从各个视角得到的点集合并到一个统一的坐标系下形成一个完整的数据点云,然后就可以方便地进行可视化,这就是点云数据的配准。点云配准技术通过计算机技术和统计学规律,通过计算机计算两个点云之间的错位,也就是把在不同的坐标系下的得到的点云进行坐标变..._局部点云与全局点云配准

python零基础学习书-Python零基础到进阶必读的书藉:Python学习手册pdf免费下载-程序员宅基地

文章浏览阅读273次。提取码:0oorGoogle和YouTube由于Python的高可适应性、易于维护以及适合于快速开发而采用它。如果你想要编写高质量、高效的并且易于与其他语言和工具集成的代码,《Python学习手册:第4 版》将帮助你使用Python快速实现这一点,不管你是编程新手还是Python初学者。本书是易于掌握和自学的教程,根据作者Python专家Mark Lutz的著名培训课程编写而成。《Python学习..._零基础学pythonpdf电子书

推荐文章

热门文章

相关标签