最通俗易懂的图神经网络(GCN)原理详解-程序员宅基地

技术标签: python  GCN  深度学习  Deep Learning  

gcn原文(Multi-layer Graph Convolutional Network (GCN) with first-order filters)

GCN问世已经有几年了(2016年就诞生了),但是这两年尤为火爆。本人愚钝,一直没能搞懂这个GCN为何物,最开始是看清华写的一篇三四十页的综述,读了几页就没读了;后来直接拜读GCN的开山之作,也是读到中间的数学部分就跪了;再后来在知乎上看大神们的讲解,直接被排山倒海般的公式——什么傅里叶变换、什么拉普拉斯算子等等,给搞蒙了,越读越觉得:“哇这些大佬好厉害,哎我怎么这么菜!”。

就这么反反复复,尝试一次放弃一次,终于慢慢有点理解了,慢慢从那些公式的里跳了出来,看到了全局,也就慢慢明白了GCN的原理。今天,我就记录一下我对GCN“阶段性”的理解。

GCN的概念首次提出于ICLR2017(成文于2016年):

一、GCN 是做什么的

在扎进GCN的汪洋大海前,我们先搞清楚这个玩意儿是做什么的,有什么用。

深度学习一直都是被几大经典模型给统治着,如CNN、RNN等等,它们无论再CV还是NLP领域都取得了优异的效果,那这个GCN是怎么跑出来的?是因为我们发现了很多CNN、RNN无法解决或者效果不好的问题——图结构的数据。

回忆一下,我们做图像识别,对象是图片,是一个二维的结构,于是人们发明了CNN这种神奇的模型来提取图片的特征。CNN的核心在于它的kernel,kernel是一个个小窗口,在图片上平移,通过卷积的方式来提取特征。这里的关键在于图片结构上的平移不变性:一个小窗口无论移动到图片的哪一个位置,其内部的结构都是一模一样的,因此CNN可以实现参数共享。这就是CNN的精髓所在。

再回忆一下RNN系列,它的对象是自然语言这样的序列信息,是一个一维的结构,RNN就是专门针对这些序列的结构而设计的,通过各种门的操作,使得序列前后的信息互相影响,从而很好地捕捉序列的特征。

上面讲的图片或者语言,都属于欧式空间的数据,因此才有维度的概念,欧式空间的数据的特点就是结构很规则。但是现实生活中,其实有很多很多不规则的数据结构,典型的就是图结构,或称拓扑结构,如社交网络、化学分子结构、知识图谱等等;即使是语言,实际上其内部也是复杂的树形结构,也是一种图结构;而像图片,在做目标识别的时候,我们关注的实际上只是二维图片上的部分关键点,这些点组成的也是一个图的结构。

图的结构一般来说是十分不规则的,可以认为是无限维的一种数据,所以它没有平移不变性。每一个节点的周围结构可能都是独一无二的,这种结构的数据,就让传统的CNN、RNN瞬间失效。所以很多学者从上个世纪就开始研究怎么处理这类数据了。这里涌现出了很多方法,例如GNN、DeepWalk、node2vec等等,GCN只是其中一种,这里只讲GCN,其他的后面有空再讨论。

GCN,图卷积神经网络,实际上跟CNN的作用一样,就是一个特征提取器,只不过它的对象是图数据。GCN精妙地设计了一种从图数据中提取特征的方法,从而让我们可以使用这些特征去对图数据进行节点分类(node classification)、图分类(graph classification)、边预测(link prediction),还可以顺便得到图的嵌入表示(graph embedding),可见用途广泛。因此现在人们脑洞大开,让GCN到各个领域中发光发热。

二、GCN 长啥样,吓人吗?

GCN的公式看起来还是有点吓人的,论文里的公式更是吓破了我的胆儿。但后来才发现,其实90%的内容根本不必理会,只是为了从数学上严谨地把事情给讲清楚,但是完全不影响我们的理解,尤其对于我这种“追求直觉,不求甚解”之人。

下面进入正题,我们直接看看GCN的核心部分是什么样子:

假设我们手头有一批图数据,其中有N个节点(node),每个节点都有自己的特征,我们设这些节点的特征组成一个N×D维的矩阵X,然后各个节点之间的关系也会形成一个N×N维的矩阵A,也称为邻接矩阵(adjacency matrix)。X和A便是我们模型的输入。

GCN也是一个神经网络层,它的层与层之间的传播方式是:

这个公式中:

  • A波浪=A+I,I是单位矩阵
  • D波浪是A波浪的度矩阵(degree matrix),公式为
  • H是每一层的特征,对于输入层的话,H就是X
  • σ是非线性激活函数

我们先不用考虑为什么要这样去设计一个公式。我们现在只用知道:

这个部分,是可以事先算好的,因为D波浪由A计算而来,而A是我们的输入之一。

所以对于不需要去了解数学原理、只想应用GCN来解决实际问题的人来说,你只用知道:哦,这个GCN设计了一个牛逼的公式,用这个公式就可以很好地提取图的特征。这就够了,毕竟不是什么事情都需要知道内部原理,这是根据需求决定的。

为了直观理解,我们用论文中的一幅图:

上图中的GCN输入一个图,通过若干层GCN每个node的特征从X变成了Z,但是,无论中间有多少层,node之间的连接关系,即A,都是共享的。

假设我们构造一个两层的GCN,激活函数分别采用ReLU和Softmax,则整体的正向传播的公式为:

最后,我们针对所有带标签的节点计算cross entropy损失函数:

就可以训练一个node classification的模型了。由于即使只有很少的node有标签也能训练,作者称他们的方法为半监督分类。

当然,你也可以用这个方法去做graph classification、link prediction,只是把损失函数给变化一下即可。

三、GCN 为什么是这个样子

我前后翻看了很多人的解读,但是读了一圈,最让我清楚明白为什么GCN的公式是这样子的居然是作者Kipf自己的博客:http://tkipf.github.io/graph-convolutional-networks/ 推荐大家一读。

作者给出了一个由简入繁的过程来解释:

我们的每一层GCN的输入都是邻接矩阵A和node的特征H,那么我们直接做一个内积,再乘一个参数矩阵W,然后激活一下,就相当于一个简单的神经网络层嘛,是不是也可以呢?

实验证明,即使就这么简单的神经网络层,就已经很强大了。这个简单模型应该大家都能理解吧,这就是正常的神经网络操作。

但是这个简单模型有几个局限性:

  • 只使用A的话,由于A的对角线上都是0,所以在和特征矩阵H相乘的时候,只会计算一个node的所有邻居的特征的加权和,该node自己的特征却被忽略了。因此,我们可以做一个小小的改动,给A加上一个单位矩阵 I ,这样就让对角线元素变成1了。
  • A是没有经过归一化的矩阵,这样与特征矩阵相乘会改变特征原本的分布,产生一些不可预测的问题。所以我们对A做一个标准化处理。首先让A的每一行加起来为1,我们可以乘以一个D的逆,D就是度矩阵。我们可以进一步把D的拆开与A相乘,得到一个对称且归一化的矩阵 :。

通过对上面两个局限的改进,我们便得到了最终的层特征传播公式:

其中

公式中的与对称归一化拉普拉斯矩阵十分类似,而在谱图卷积的核心就是使用对称归一化拉普拉斯矩阵,这也是GCN的卷积叫法的来历。原论文中给出了完整的从谱卷积到GCN的一步步推导,我是看不下去的,大家有兴趣可以自行阅读。

四、GCN 有多牛

在看了上面的公式以及训练方法之后,我并没有觉得GCN有多么特别,无非就是一个设计巧妙的公式嘛,也许我不用这么复杂的公式,多加一点训练数据或者把模型做深,也可能达到媲美的效果呢。

但是一直到我读到了论文的附录部分,我才顿时发现:GCN原来这么牛啊!

为啥呢?

因为即使不训练,完全使用随机初始化的参数W,GCN提取出来的特征就以及十分优秀了!这跟CNN不训练是完全不一样的,后者不训练是根本得不到什么有效特征的。

我们看论文原文:

然后作者做了一个实验,使用一个俱乐部会员的关系网络,使用随机初始化的GCN进行特征提取,得到各个node的embedding,然后可视化:

可以发现,在原数据中同类别的node,经过GCN的提取出的embedding,已经在空间上自动聚类了。

而这种聚类结果,可以和DeepWalk、node2vec这种经过复杂训练得到的node embedding的效果媲美了。

说的夸张一点,比赛还没开始,GCN就已经在终点了。看到这里我不禁猛拍大腿打呼:“NB!”

还没训练就已经效果这么好,那给少量的标注信息,GCN的效果就会更加出色。

作者接着给每一类的node,提供仅仅一个标注样本,然后去训练,得到的可视化效果如下:

这是整片论文让我印象最深刻的地方。

其他:

  1. 对于很多网络,我们可能没有节点的特征,这个时候可以使用GCN吗?答案是可以的,如论文中作者对那个俱乐部网络,采用的方法就是用单位矩阵 I 替换特征矩阵 X。
  2. 我没有任何的节点类别的标注,或者什么其他的标注信息,可以使用GCN吗?当然,就如前面讲的,不训练的GCN,也可以用来提取graph embedding,而且效果还不错。
  3. GCN网络的层数多少比较好?论文的作者做过GCN网络深度的对比研究,在他们的实验中发现,GCN层数不宜多,2-3层的效果就很好了
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_41894030/article/details/108941972

智能推荐

艾美捷Epigentek DNA样品的超声能量处理方案-程序员宅基地

文章浏览阅读15次。空化气泡的大小和相应的空化能量可以通过调整完全标度的振幅水平来操纵和数字控制。通过强调超声技术中的更高通量处理和防止样品污染,Epigentek EpiSonic超声仪可以轻松集成到现有的实验室工作流程中,并且特别适合与表观遗传学和下一代应用的兼容性。Epigentek的EpiSonic已成为一种有效的剪切设备,用于在染色质免疫沉淀技术中制备染色质样品,以及用于下一代测序平台的DNA文库制备。该装置的经济性及其多重样品的能力使其成为每个实验室拥有的经济高效的工具,而不仅仅是核心设施。

11、合宙Air模块Luat开发:通过http协议获取天气信息_合宙获取天气-程序员宅基地

文章浏览阅读4.2k次,点赞3次,收藏14次。目录点击这里查看所有博文  本系列博客,理论上适用于合宙的Air202、Air268、Air720x、Air720S以及最近发布的Air720U(我还没拿到样机,应该也能支持)。  先不管支不支持,如果你用的是合宙的模块,那都不妨一试,也许会有意外收获。  我使用的是Air720SL模块,如果在其他模块上不能用,那就是底层core固件暂时还没有支持,这里的代码是没有问题的。例程仅供参考!..._合宙获取天气

EasyMesh和802.11s对比-程序员宅基地

文章浏览阅读7.7k次,点赞2次,收藏41次。1 关于meshMesh的意思是网状物,以前读书的时候,在自动化领域有传感器自组网,zigbee、蓝牙等无线方式实现各个网络节点消息通信,通过各种算法,保证整个网络中所有节点信息能经过多跳最终传递到目的地,用于数据采集。十多年过去了,在无线路由器领域又把这个mesh概念翻炒了一下,各大品牌都推出了mesh路由器,大多数是3个为一组,实现在面积较大的住宅里,增强wifi覆盖范围,智能在多热点之间切换,提升上网体验。因为节点基本上在3个以内,所以mesh的算法不必太复杂,组网形式比较简单。各厂家都自定义了组_802.11s

线程的几种状态_线程状态-程序员宅基地

文章浏览阅读5.2k次,点赞8次,收藏21次。线程的几种状态_线程状态

stack的常见用法详解_stack函数用法-程序员宅基地

文章浏览阅读4.2w次,点赞124次,收藏688次。stack翻译为栈,是STL中实现的一个后进先出的容器。要使用 stack,应先添加头文件include<stack>,并在头文件下面加上“ using namespacestd;"1. stack的定义其定义的写法和其他STL容器相同, typename可以任意基本数据类型或容器:stack<typename> name;2. stack容器内元素的访问..._stack函数用法

2018.11.16javascript课上随笔(DOM)-程序员宅基地

文章浏览阅读71次。<li> <a href = "“#”>-</a></li><li>子节点:文本节点(回车),元素节点,文本节点。不同节点树:  节点(各种类型节点)childNodes:返回子节点的所有子节点的集合,包含任何类型、元素节点(元素类型节点):child。node.getAttribute(at...

随便推点

layui.extend的一点知识 第三方模块base 路径_layui extend-程序员宅基地

文章浏览阅读3.4k次。//config的设置是全局的layui.config({ base: '/res/js/' //假设这是你存放拓展模块的根目录}).extend({ //设定模块别名 mymod: 'mymod' //如果 mymod.js 是在根目录,也可以不用设定别名 ,mod1: 'admin/mod1' //相对于上述 base 目录的子目录}); //你也可以忽略 base 设定的根目录,直接在 extend 指定路径(主要:该功能为 layui 2.2.0 新增)layui.exten_layui extend

5G云计算:5G网络的分层思想_5g分层结构-程序员宅基地

文章浏览阅读3.2k次,点赞6次,收藏13次。分层思想分层思想分层思想-1分层思想-2分层思想-2OSI七层参考模型物理层和数据链路层物理层数据链路层网络层传输层会话层表示层应用层OSI七层模型的分层结构TCP/IP协议族的组成数据封装过程数据解封装过程PDU设备与层的对应关系各层通信分层思想分层思想-1在现实生活种,我们在喝牛奶时,未必了解他的生产过程,我们所接触的或许只是从超时购买牛奶。分层思想-2平时我们在网络时也未必知道数据的传输过程我们的所考虑的就是可以传就可以,不用管他时怎么传输的分层思想-2将复杂的流程分解为几个功能_5g分层结构

基于二值化图像转GCode的单向扫描实现-程序员宅基地

文章浏览阅读191次。在激光雕刻中,单向扫描(Unidirectional Scanning)是一种雕刻技术,其中激光头只在一个方向上移动,而不是来回移动。这种移动方式主要应用于通过激光逐行扫描图像表面的过程。具体而言,单向扫描的过程通常包括以下步骤:横向移动(X轴): 激光头沿X轴方向移动到图像的一侧。纵向移动(Y轴): 激光头沿Y轴方向开始逐行移动,刻蚀图像表面。这一过程是单向的,即在每一行上激光头只在一个方向上移动。返回横向移动: 一旦一行完成,激光头返回到图像的一侧,准备进行下一行的刻蚀。

算法随笔:强连通分量-程序员宅基地

文章浏览阅读577次。强连通:在有向图G中,如果两个点u和v是互相可达的,即从u出发可以到达v,从v出发也可以到达u,则成u和v是强连通的。强连通分量:如果一个有向图G不是强连通图,那么可以把它分成躲个子图,其中每个子图的内部是强连通的,而且这些子图已经扩展到最大,不能与子图外的任一点强连通,成这样的一个“极大连通”子图是G的一个强连通分量(SCC)。强连通分量的一些性质:(1)一个点必须有出度和入度,才会与其他点强连通。(2)把一个SCC从图中挖掉,不影响其他点的强连通性。_强连通分量

Django(2)|templates模板+静态资源目录static_django templates-程序员宅基地

文章浏览阅读3.9k次,点赞5次,收藏18次。在做web开发,要给用户提供一个页面,页面包括静态页面+数据,两者结合起来就是完整的可视化的页面,django的模板系统支持这种功能,首先需要写一个静态页面,然后通过python的模板语法将数据渲染上去。1.创建一个templates目录2.配置。_django templates

linux下的GPU测试软件,Ubuntu等Linux系统显卡性能测试软件 Unigine 3D-程序员宅基地

文章浏览阅读1.7k次。Ubuntu等Linux系统显卡性能测试软件 Unigine 3DUbuntu Intel显卡驱动安装,请参考:ATI和NVIDIA显卡请在软件和更新中的附加驱动中安装。 这里推荐: 运行后,F9就可评分,已测试显卡有K2000 2GB 900+分,GT330m 1GB 340+ 分,GT620 1GB 340+ 分,四代i5核显340+ 分,还有写博客的小盒子100+ 分。relaybot@re...

推荐文章

热门文章

相关标签