java开发C语言编译器:JVM 的基本操作指令介绍及其程序运行原理_jvm和c语言-程序员宅基地

技术标签: jvm  java  编译器  c语言  

更详细的讲解和代码调试演示过程,请参看视频
用java开发C语言编译器

更详细的讲解和代码调试演示过程,请参看视频
如何进入google,算法面试技能全面提升指南

如果你对机器学习感兴趣,请参看一下链接:
机器学习:神经网络导论

更详细的讲解和代码调试演示过程,请参看视频
Linux kernel Hacker, 从零构建自己的内核

java虚拟机是对实体计算机的模拟,任何用高级语言开发的程序,必须编译成二进制代码后,才能在CPU上运行,而这些二进制代码本质上是一系列基础指令集的集合,这些指令的作用非常简单,例如把数值存到某块内存,或者把信息从某地读出,然后放入到寄存器中。

同理,运行在java虚拟机上的字节码,其本质也是一系列作用单一的指令的集合。我们看看,要完成一个简单的计算功能,例如计算 6 * 9 的结果,虚拟机是如何依赖基础指令来完成相应计算功能的。计算式 6 * 9 被编译成java字节码后,对应的指令如下:

bipush  6
bipush  9
imul

我们前面强调过,jvm是以栈为基础来运行指令的,任何指令的执行,如果需要参数的话,这些参数必须先压入虚拟机的堆栈上,指令才可以正常执行。从上面的代码可以看成,指令imul 的作用是做乘法操作,要相乘的两个数在执行这句指令前,必须都压入到堆栈的顶部,因此指令bipush 6的作用是把数值6压入到堆栈顶部,bipush 9作用是把数值9压入到堆栈顶部,执行这两条指令后堆栈情况如下:
stack: 9, 6

当虚拟机执行指令imul后,会把堆栈顶部的两个数值弹出,把他们相乘,然后把乘积压入堆栈顶部,所以imul指令执行后,堆栈情况如下:
stack: 54

java虚拟机的指令有一些特点,在指令的前面会有一些字符用于表示指令所要操作的数据类型,例如bipush指令,push前面的字符i表示指令只接受整形数据,i的意思是int, 最前面的b表示byte, 也就是说bipush指令只能操作范围在-128到128之间的整数,同理如果指令是sipush,表示该指令只能把short类型的整数压入到堆栈。同理指令imul表示它只能处理两个整形数相乘,如果此时堆栈顶部的两个数字不是整形的话,那么执行imul指令时,虚拟机就会报错。以下我们给出字符对应的数据类型:

Letter Type
a reference 指令处理的是对象引用
b byte or boolean
c char
d double
i int
l long
s short

如果你看到指令fmul, 你就能知道,这条指令的作用是对两个浮点数做乘法。相应指令的具体作用,大家可以查询java虚拟机规范,这里我们不深入探讨。

我们也提到过,java虚拟机的运行环境,不单单有堆栈,它还有一个局部变量队列,用来存储临时变量的信息。因此java虚拟机也提供了相应的操作指令。假设虚拟机堆栈和局部变量队列的数据存储情况如下:

stack: 1
array: _ _ _ 2 _ _

也就是堆栈顶部数据为1,在具备变量队列中,下标为3的地方存储了一个整形2,如果执行了指令 istore 3, 那么虚拟机就会把局部变量队列下标为3处所存储的整形数压入堆栈顶部,于是执行完指令后,堆栈和队列的情况如下:

stack: 2, 1
array: _ _ _ _ _ _

如果接着执行的指令是 iload 2, 它的意思是,把堆栈顶部的数值弹出,然后存储到局部变量队列下标为2的区域处,于是执行完后,虚拟机的堆栈和队列情况如下:

stack: 1
array: _ _ 2 _ _ _

同理load和store前面的字符用于表明指令所能处理的数据,如果想把一个浮点数从队列压入到堆栈,那么对应的指令就是 fstroe . 假设局部变量队列在下标2为1 的地方存储的是对一个对象的引用,要想把这个引用压入到堆栈顶部,对应的指令就是 astore 1. store 前面的a表示的就是对象引用。这里我们只需要理解指令的基本原理,具体的相关指令,大家可以通过查询java虚拟机规范来了解。

有了上面的基础知识后,我们就可以看看,如何将下面的C语言代码编译成java字节码:

void f() {
   printf("The result of 3 multiply 6 is :%d", 3*6);
}

void main() {
   f();
}

我们的编译器在解析上面代码时,读取到数字字符是,会根据表达式:
Unary -> NUMBER
进行解析,因此当编译器在执行上面表达式的解析时,我们就知道当前已经读取到了数字常量,此时我们可以通过push指令把该数字常量压入虚拟机堆栈上。解析上面表达式的代码是在UnaryExecutor中,所以在UnaryExecutor.java中,我们做如下修改:

public class UnaryNodeExecutor extends BaseExecutor implements IExecutorReceiver{
    
....
  public Object Execute(ICodeNode root) {
    ....
    case CGrammarInitializer.Number_TO_Unary:
            text = (String)root.getAttribute(ICodeKey.TEXT);
            boolean isFloat = text.indexOf('.') != -1;
            if (isFloat) {
                value = Float.valueOf(text);
                root.setAttribute(ICodeKey.VALUE, Float.valueOf(text)); 
            } else {
                value = Integer.valueOf(text);
                root.setAttribute(ICodeKey.VALUE, Integer.valueOf(text));
            }
            ProgramGenerator.getInstance().emit(Instruction.IPUSH, value.toString());
            break;
    ....
  }
....

在编译器读入代码,解析到一个数字常量时,我们输出push 指令,后面跟着对应的数字常量,所以当我们的编译器解析代码时,读取到数字字符3,那么上面的代码被执行,于是语句:
ProgramGenerator.getInstance().emit(Instruction.IPUSH, value.toString());
就会在java汇编文件中输出一条语句:
sipush 3

同理,当读取字符6时,上面的代码又会被执行,于是在java汇编文件中又再输出一条语句:
sipush 6

当表达式3 * 6 被解析时,由于该算式对应的语法表达式是:
Binary -> Binary * Binary

所以,当我们的编译器执行上面的语法表达式时,我们就可以输出乘法指令imul. 执行上面表达式的解析是在BinaryExecutor.java中,所以代码改动如下:

public class BinaryExecutor extends BaseExecutor{
    
    @Override
    public Object Execute(ICodeNode root) {
    ....
    case CGrammarInitializer.Binary_Plus_Binary_TO_Binary:
        case CGrammarInitializer.Binary_DivOp_Binary_TO_Binary:
        case CGrammarInitializer.Binary_Minus_Binary_TO_Binary:
        case CGrammarInitializer.Binary_Start_Binary_TO_Binary:

        ......

         else if (production ==  CGrammarInitializer.Binary_Start_Binary_TO_Binary) {
                String text = root.getChildren().get(0).getAttribute(ICodeKey.TEXT) + " * " + root.getChildren().get(1).getAttribute(ICodeKey.TEXT);
                root.setAttribute(ICodeKey.VALUE, val1 * val2); 
                root.setAttribute(ICodeKey.TEXT,  text);
                System.out.println(text + " is " + (val1 * val2) );

                ProgramGenerator.getInstance().emit(Instruction.IMUL);
            }
            else {
            ....
            ....
            }

            break;
    ....
    }

大家可以看到,在解析两数相乘时,编译器通过代码:
ProgramGenerator.getInstance().emit(Instruction.IMUL);
在java汇编文件中输出指令 imul,到此我们编译器成功输出了以下语句:

sipush  3
sipush  6
imul

上面三条指令执行后,虚拟机的堆栈顶部存有的数值是18.接下来我们需要把数值18打印出来。通过上节我们了解到,要把信息输出到控制台上时,需要调用对象System.out 的 print 函数,也就是需要把System.out对象先压到堆栈上,再把要输出的内容压到堆栈上,也就是所,如果我们想要把结果18打印到控制台上,那么堆栈上的内存必须是这样:

stack: 18, System.out

但现在问题是,数值18处于堆栈顶部,要想实现上面所需的堆栈数据排列,我们需要把数值18先拿开,然后把对象System.out压入堆栈,接着再把数值18重新压入堆栈,因此我们需要先使用istore指令,把数值18从堆栈放入局部变量队列,也就是先执行指令istore 0, 使得虚拟机堆栈和队列的数据存储情况如下:

stack:
array: 18

然后 执行指令getstatic ,把 System.out对象压入堆栈:

stack: System.out
array: 18

最后使用指令 iload 0 , 把位于队列偏移为0处的数值18重新加载会堆栈,执行完指令iload 0 后,虚拟机堆栈和队列上的内容如下:
stack: 18, System.out
array:

此时要输出到控制台的内容和执行输出操作的System.out对象都已经在堆栈顶部,我们再通过指令invokevirtual 调用System.out对象的Print接口就可以实现把数值18输出到控制台上的目的了。

因此编译器在把语句 printf(“The result of 3 multiply 6 is :%d”, 3*6); 转换成java字节码时,分以下几步走,首先把字符串”The result of 3 multiply 6 is ” 输出到控制台,接着解析表达式 3*6,生成上头所说的三条java指令,然后再执行上头所说的步骤,把数值18和类对象System.out放入到堆栈顶部,进而再把数值18输出到控制台上。

这里的逻辑有点繁琐,请大家通过视频获得更清楚的讲解和演示。

上头所说的操作都需要在编译器解析printf调用时去具体处理,因此相关代码的实现在ClibCall.java 中,代码如下:

private Object handlePrintfCall() {
        ArrayList<Object> argsList = FunctionArgumentList.getFunctionArgumentList().getFuncArgList(false);
        String argStr = (String)argsList.get(0);
        String formatStr = "";

        int i = 0;
        int argCount = 1;
        while (i < argStr.length()) {
            if (argStr.charAt(i) == '%' && i+1 < argStr.length() && 
                    argStr.charAt(i+1) == 'd') {
                i += 2;
                generateJavaAssemblyForPrintf(formatStr);
                formatStr += argsList.get(argCount);
                argCount++;
                printInteger();
            } else {
                formatStr += argStr.charAt(i);
                i++;
            }
        }

        System.out.println(formatStr);

        generateJavaAssemblyForPrintf("\n");
        return null;
    }

    private void generateJavaAssemblyForPrintf(String s) {
        ProgramGenerator generator = ProgramGenerator.getInstance();
        generator.emit(Instruction.GETSTATIC, "java/lang/System/out Ljava/io/PrintStream;");
        generator.emit(Instruction.LDC, "\"" + s + "\"");
        String printMethod = "java/io/PrintStream/print(Ljava/lang/String;)V";
        generator.emit(Instruction.INVOKEVIRTUAL, printMethod);
    }

    private void printInteger() {
        ProgramGenerator generator = ProgramGenerator.getInstance();
        generator.emit(Instruction.ISTORE, "0");
        generator.emit(Instruction.GETSTATIC, "java/lang/System/out Ljava/io/PrintStream;");
        generator.emit(Instruction.ILOAD, "0");
        String printMethod = "java/io/PrintStream/print(I)V";
        generator.emit(Instruction.INVOKEVIRTUAL, printMethod);
    }

在handlePrintfCall调用中,在输出数值之前,先通过generateJavaAssemblyForPrintf调用,把字符串先输出,然后调用printInteger接着把数值输出到控制台上,在printInteger中,先把指令istore 0 输出到Java汇编文件里,然后输出指令getstatic , 目的就是把System.out对象压入到堆栈上,然后再次通过输出指令 iload 0 , 把数值18重新压入到堆栈顶部,最后在通过invokevirtual指令,把数值18输出到控制台。

上面的代码执行后,C语言代码被编译成如下java汇编代码:

.class public CSourceToJava
.super java/lang/Object

.method public static main([Ljava/lang/String;)V
    invokestatic    CSourceToJava/f()V
    return
.end method
.method public static f()V
    sipush  3
    sipush  6
    imul
    getstatic   java/lang/System/out Ljava/io/PrintStream;
    ldc "The result of 3 multiply 6 is :"
    invokevirtual   java/io/PrintStream/print(Ljava/lang/String;)V
    istore  0
    getstatic   java/lang/System/out Ljava/io/PrintStream;
    iload   0
    invokevirtual   java/io/PrintStream/print(I)V
    return
.end method

.end class

我们可以看到,代码先是通过三条指令
sipush 3
sipush 6
imul
计算 3*6 , 接着把字符串”The result of 3 multiply 6 is :”压到堆栈打印出来,最后再通过前面所说的指令操作,把堆栈顶部的数值18打印到控制台上。

请大家通过视频获得更详实的讲解和更清晰的调试演示过程。

更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
这里写图片描述

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/tyler_download/article/details/72926989

智能推荐

攻防世界_难度8_happy_puzzle_攻防世界困难模式攻略图文-程序员宅基地

文章浏览阅读645次。这个肯定是末尾的IDAT了,因为IDAT必须要满了才会开始一下个IDAT,这个明显就是末尾的IDAT了。,对应下面的create_head()代码。,对应下面的create_tail()代码。不要考虑爆破,我已经试了一下,太多情况了。题目来源:UNCTF。_攻防世界困难模式攻略图文

达梦数据库的导出(备份)、导入_达梦数据库导入导出-程序员宅基地

文章浏览阅读2.9k次,点赞3次,收藏10次。偶尔会用到,记录、分享。1. 数据库导出1.1 切换到dmdba用户su - dmdba1.2 进入达梦数据库安装路径的bin目录,执行导库操作  导出语句:./dexp cwy_init/[email protected]:5236 file=cwy_init.dmp log=cwy_init_exp.log 注释:   cwy_init/init_123..._达梦数据库导入导出

js引入kindeditor富文本编辑器的使用_kindeditor.js-程序员宅基地

文章浏览阅读1.9k次。1. 在官网上下载KindEditor文件,可以删掉不需要要到的jsp,asp,asp.net和php文件夹。接着把文件夹放到项目文件目录下。2. 修改html文件,在页面引入js文件:<script type="text/javascript" src="./kindeditor/kindeditor-all.js"></script><script type="text/javascript" src="./kindeditor/lang/zh-CN.js"_kindeditor.js

STM32学习过程记录11——基于STM32G431CBU6硬件SPI+DMA的高效WS2812B控制方法-程序员宅基地

文章浏览阅读2.3k次,点赞6次,收藏14次。SPI的详情简介不必赘述。假设我们通过SPI发送0xAA,我们的数据线就会变为10101010,通过修改不同的内容,即可修改SPI中0和1的持续时间。比如0xF0即为前半周期为高电平,后半周期为低电平的状态。在SPI的通信模式中,CPHA配置会影响该实验,下图展示了不同采样位置的SPI时序图[1]。CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出。_stm32g431cbu6

计算机网络-数据链路层_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏8次。数据链路层习题自测问题1.数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在?2.数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。3.网络适配器的作用是什么?网络适配器工作在哪一层?4.数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?5.如果在数据链路层不进行帧定界,会发生什么问题?6.PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输

软件测试工程师移民加拿大_无证移民,未受过软件工程师的教育(第1部分)-程序员宅基地

文章浏览阅读587次。软件测试工程师移民加拿大 无证移民,未受过软件工程师的教育(第1部分) (Undocumented Immigrant With No Education to Software Engineer(Part 1))Before I start, I want you to please bear with me on the way I write, I have very little gen...

随便推点

Thinkpad X250 secure boot failed 启动失败问题解决_安装完系统提示secureboot failure-程序员宅基地

文章浏览阅读304次。Thinkpad X250笔记本电脑,装的是FreeBSD,进入BIOS修改虚拟化配置(其后可能是误设置了安全开机),保存退出后系统无法启动,显示:secure boot failed ,把自己惊出一身冷汗,因为这台笔记本刚好还没开始做备份.....根据错误提示,到bios里面去找相关配置,在Security里面找到了Secure Boot选项,发现果然被设置为Enabled,将其修改为Disabled ,再开机,终于正常启动了。_安装完系统提示secureboot failure

C++如何做字符串分割(5种方法)_c++ 字符串分割-程序员宅基地

文章浏览阅读10w+次,点赞93次,收藏352次。1、用strtok函数进行字符串分割原型: char *strtok(char *str, const char *delim);功能:分解字符串为一组字符串。参数说明:str为要分解的字符串,delim为分隔符字符串。返回值:从str开头开始的一个个被分割的串。当没有被分割的串时则返回NULL。其它:strtok函数线程不安全,可以使用strtok_r替代。示例://借助strtok实现split#include <string.h>#include <stdio.h&_c++ 字符串分割

2013第四届蓝桥杯 C/C++本科A组 真题答案解析_2013年第四届c a组蓝桥杯省赛真题解答-程序员宅基地

文章浏览阅读2.3k次。1 .高斯日记 大数学家高斯有个好习惯:无论如何都要记日记。他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210后来人们知道,那个整数就是日期,它表示那一天是高斯出生后的第几天。这或许也是个好习惯,它时时刻刻提醒着主人:日子又过去一天,还有多少时光可以用于浪费呢?高斯出生于:1777年4月30日。在高斯发现的一个重要定理的日记_2013年第四届c a组蓝桥杯省赛真题解答

基于供需算法优化的核极限学习机(KELM)分类算法-程序员宅基地

文章浏览阅读851次,点赞17次,收藏22次。摘要:本文利用供需算法对核极限学习机(KELM)进行优化,并用于分类。

metasploitable2渗透测试_metasploitable2怎么进入-程序员宅基地

文章浏览阅读1.1k次。一、系统弱密码登录1、在kali上执行命令行telnet 192.168.26.1292、Login和password都输入msfadmin3、登录成功,进入系统4、测试如下:二、MySQL弱密码登录:1、在kali上执行mysql –h 192.168.26.129 –u root2、登录成功,进入MySQL系统3、测试效果:三、PostgreSQL弱密码登录1、在Kali上执行psql -h 192.168.26.129 –U post..._metasploitable2怎么进入

Python学习之路:从入门到精通的指南_python人工智能开发从入门到精通pdf-程序员宅基地

文章浏览阅读257次。本文将为初学者提供Python学习的详细指南,从Python的历史、基础语法和数据类型到面向对象编程、模块和库的使用。通过本文,您将能够掌握Python编程的核心概念,为今后的编程学习和实践打下坚实基础。_python人工智能开发从入门到精通pdf

推荐文章

热门文章

相关标签