C++11 并发指南六( <atomic> 类型详解二 std::atomic )_swartz_lubel的博客-程序员秘密

技术标签: c 11  C++11  

C++11 并发指南六(atomic 类型详解一 atomic_flag 介绍)  一文介绍了 C++11 中最简单的原子类型 std::atomic_flag,但是 std::atomic_flag 过于简单,只提供了 test_and_set 和 clear 两个 API,不能满足其他需求(如 store, load, exchange, compare_exchange 等),因此本文将介绍功能更加完善的 std::atomic 类。

std::atomic 基本介绍

std::atomic 是模板类,一个模板类型为 T 的原子对象中封装了一个类型为 T 的值。

template <class T> struct atomic;

原子类型对象的主要特点就是从不同线程访问不会导致数据竞争(data race)。因此从不同线程访问某个原子对象是良性 (well-defined) 行为,而通常对于非原子类型而言,并发访问某个对象(如果不做任何同步操作)会导致未定义 (undifined) 行为发生。

C++11 标准中的基本 std::atomic 模板定义如下:

复制代码
template < class T > struct atomic {
    bool is_lock_free() const volatile;
    bool is_lock_free() const;
    void store(T, memory_order = memory_order_seq_cst) volatile;
    void store(T, memory_order = memory_order_seq_cst);
    T load(memory_order = memory_order_seq_cst) const volatile;
    T load(memory_order = memory_order_seq_cst) const;
    operator  T() const volatile;
    operator  T() const;
    T exchange(T, memory_order = memory_order_seq_cst) volatile;
    T exchange(T, memory_order = memory_order_seq_cst);
    bool compare_exchange_weak(T &, T, memory_order, memory_order) volatile;
    bool compare_exchange_weak(T &, T, memory_order, memory_order);
    bool compare_exchange_strong(T &, T, memory_order, memory_order) volatile;
    bool compare_exchange_strong(T &, T, memory_order, memory_order);
    bool compare_exchange_weak(T &, T, memory_order = memory_order_seq_cst) volatile;
    bool compare_exchange_weak(T &, T, memory_order = memory_order_seq_cst);
    bool compare_exchange_strong(T &, T, memory_order = memory_order_seq_cst) volatile;
    bool compare_exchange_strong(T &, T, memory_order = memory_order_seq_cst);
    atomic() = default;
    constexpr atomic(T);
    atomic(const atomic &) = delete;
    atomic & operator=(const atomic &) = delete;
    atomic & operator=(const atomic &) volatile = delete;
    T operator=(T) volatile;
    T operator=(T);
};
复制代码

另外,C++11 标准库 std::atomic 提供了针对整形(integral)和指针类型的特化实现,分别定义如下:

针对整形(integal)的特化,其中 integal 代表了如下类型char, signed char, unsigned char, short, unsigned short, int, unsigned int, long, unsigned long, long long, unsigned long long, char16_t, char32_t, wchar_t:

?
template <> struct atomic<integral> {
     bool is_lock_free() const volatile ;
     bool is_lock_free() const ;
 
     void store(integral, memory_order = memory_order_seq_cst) volatile ;
     void store(integral, memory_order = memory_order_seq_cst);
 
     integral load(memory_order = memory_order_seq_cst) const volatile ;
     integral load(memory_order = memory_order_seq_cst) const ;
 
     operator integral() const volatile ;
     operator integral() const ;
 
     integral exchange(integral, memory_order = memory_order_seq_cst) volatile ;
     integral exchange(integral, memory_order = memory_order_seq_cst);
 
     bool compare_exchange_weak(integral&, integral, memory_order, memory_order) volatile ;
     bool compare_exchange_weak(integral&, integral, memory_order, memory_order);
 
     bool compare_exchange_strong(integral&, integral, memory_order, memory_order) volatile ;
     bool compare_exchange_strong(integral&, integral, memory_order, memory_order);
 
     bool compare_exchange_weak(integral&, integral, memory_order = memory_order_seq_cst) volatile ;
     bool compare_exchange_weak(integral&, integral, memory_order = memory_order_seq_cst);
 
     bool compare_exchange_strong(integral&, integral, memory_order = memory_order_seq_cst) volatile ;
     bool compare_exchange_strong(integral&, integral, memory_order = memory_order_seq_cst);
 
     integral fetch_add(integral, memory_order = memory_order_seq_cst) volatile ;
     integral fetch_add(integral, memory_order = memory_order_seq_cst);
 
     integral fetch_sub(integral, memory_order = memory_order_seq_cst) volatile ;
     integral fetch_sub(integral, memory_order = memory_order_seq_cst);
 
     integral fetch_and(integral, memory_order = memory_order_seq_cst) volatile ;
     integral fetch_and(integral, memory_order = memory_order_seq_cst);
 
     integral fetch_or(integral, memory_order = memory_order_seq_cst) volatile ;
     integral fetch_or(integral, memory_order = memory_order_seq_cst);
 
     integral fetch_xor(integral, memory_order = memory_order_seq_cst) volatile ;
     integral fetch_xor(integral, memory_order = memory_order_seq_cst);
     
     atomic() = default ;
     constexpr atomic(integral);
     atomic( const atomic&) = delete ;
 
     atomic& operator=( const atomic&) = delete ;
     atomic& operator=( const atomic&) volatile = delete ;
     
     integral operator=(integral) volatile ;
     integral operator=(integral);
     
     integral operator++( int ) volatile ;
     integral operator++( int );
     integral operator--( int ) volatile ;
     integral operator--( int );
     integral operator++() volatile ;
     integral operator++();
     integral operator--() volatile ;
     integral operator--();
     integral operator+=(integral) volatile ;
     integral operator+=(integral);
     integral operator-=(integral) volatile ;
     integral operator-=(integral);
     integral operator&=(integral) volatile ;
     integral operator&=(integral);
     integral operator|=(integral) volatile ;
     integral operator|=(integral);
     integral operator^=(integral) volatile ;
     integral operator^=(integral);
};

针对指针的特化:

?
template < class T> struct atomic<T*> {
     bool is_lock_free() const volatile ;
     bool is_lock_free() const ;
 
     void store(T*, memory_order = memory_order_seq_cst) volatile ;
     void store(T*, memory_order = memory_order_seq_cst);
 
     T* load(memory_order = memory_order_seq_cst) const volatile ;
     T* load(memory_order = memory_order_seq_cst) const ;
 
     operator T*() const volatile ;
     operator T*() const ;
 
     T* exchange(T*, memory_order = memory_order_seq_cst) volatile ;
     T* exchange(T*, memory_order = memory_order_seq_cst);
 
     bool compare_exchange_weak(T*&, T*, memory_order, memory_order) volatile ;
     bool compare_exchange_weak(T*&, T*, memory_order, memory_order);
 
     bool compare_exchange_strong(T*&, T*, memory_order, memory_order) volatile ;
     bool compare_exchange_strong(T*&, T*, memory_order, memory_order);
 
     bool compare_exchange_weak(T*&, T*, memory_order = memory_order_seq_cst) volatile ;
     bool compare_exchange_weak(T*&, T*, memory_order = memory_order_seq_cst);
 
     bool compare_exchange_strong(T*&, T*, memory_order = memory_order_seq_cst) volatile ;
     bool compare_exchange_strong(T*&, T*, memory_order = memory_order_seq_cst);
 
     T* fetch_add( ptrdiff_t , memory_order = memory_order_seq_cst) volatile ;
     T* fetch_add( ptrdiff_t , memory_order = memory_order_seq_cst);
 
     T* fetch_sub( ptrdiff_t , memory_order = memory_order_seq_cst) volatile ;
     T* fetch_sub( ptrdiff_t , memory_order = memory_order_seq_cst);
 
     atomic() = default ;
     constexpr atomic(T*);
     atomic( const atomic&) = delete ;
 
     atomic& operator=( const atomic&) = delete ;
     atomic& operator=( const atomic&) volatile = delete ;
 
     T* operator=(T*) volatile ;
     T* operator=(T*);
     T* operator++( int ) volatile ;
     T* operator++( int );
     T* operator--( int ) volatile ;
     T* operator--( int );
     T* operator++() volatile ;
     T* operator++();
     T* operator--() volatile ;
     T* operator--();
     T* operator+=( ptrdiff_t ) volatile ;
     T* operator+=( ptrdiff_t );
     T* operator-=( ptrdiff_t ) volatile ;
     T* operator-=( ptrdiff_t );
};

std::atomic 成员函数

 好了,对 std::atomic 有了一个最基本认识之后我们来看 std::atomic 的成员函数吧。

std::atomic 构造函数

std::atomic 的构造函数如下:

default (1)
          atomic() noexcept = default;
initialization (2)
constexpr atomic (T val) noexcept;
copy [deleted] (3)
          atomic (const atomic&) = delete;
  1. 默认构造函数,由默认构造函数创建的 std::atomic 对象处于未初始化(uninitialized)状态,对处于未初始化(uninitialized)状态 std::atomic对象可以由 atomic_init 函数进行初始化。
  2. 初始化构造函数,由类型 T初始化一个 std::atomic对象。
  3. 拷贝构造函数被禁用。

请看下例:

?
#include <iostream>       // std::cout
#include <atomic>         // std::atomic, std::atomic_flag, ATOMIC_FLAG_INIT
#include <thread>         // std::thread, std::this_thread::yield
#include <vector>         // std::vector
 
// 由 false 初始化一个 std::atomic<bool> 类型的原子变量
std::atomic< bool > ready( false );
std::atomic_flag winner = ATOMIC_FLAG_INIT;
 
void do_count1m( int id)
{
     while (!ready) { std::this_thread::yield(); } // 等待 ready 变为 true.
 
     for ( volatile int i=0; i<1000000; ++i) {} // 计数
 
     if (!winner.test_and_set()) {
       std::cout << "thread #" << id << " won!\n" ;
     }
}
 
int main ()
{
     std::vector<std:: thread > threads;
     std::cout << "spawning 10 threads that count to 1 million...\n" ;
     for ( int i=1; i<=10; ++i) threads.push_back(std:: thread (count1m,i));
     ready = true ;
 
     for ( auto & th : threads) th.join();
     return 0;
}

std::atomic::operator=() 函数

std::atomic 的赋值操作函数定义如下:

set value (1)
T operator= (T val) noexcept;
T operator= (T val) volatile noexcept;
copy [deleted] (2)
atomic& operator= (const atomic&) = delete;
atomic& operator= (const atomic&) volatile = delete;

可以看出,普通的赋值拷贝操作已经被禁用。但是一个类型为 T 的变量可以赋值给相应的原子类型变量(相当与隐式转换),该操作是原子的,内存序(Memory Order) 默认为顺序一致性(std::memory_order_seq_cst),如果需要指定其他的内存序,需使用 std::atomic::store()。

?
#include <iostream>             // std::cout
#include <atomic>               // std::atomic
#include <thread>               // std::thread, std::this_thread::yield
 
std::atomic < int > foo = 0;
 
void set_foo( int x)
{
     foo = x; // 调用 std::atomic::operator=().
}
 
void print_foo()
{
     while (foo == 0) { // wait while foo == 0
         std::this_thread::yield();
     }
     std::cout << "foo: " << foo << '\n' ;
}
 
int main()
{
     std:: thread first(print_foo);
     std:: thread second(set_foo, 10);
     first.join();
     second.join();
     return 0;
}

基本 std::atomic 类型操作

本节主要介绍基本 std::atomic 类型所具备的操作(即成员函数)。我们知道 std::atomic 是模板类,一个模板类型为 T 的原子对象中封装了一个类型为 T 的值。本文<std::atomic 基本介绍>一节中也提到了 std::atomic 类模板除了基本类型以外,还针对整形和指针类型做了特化。 特化的 std::atomic 类型支持更多的操作,如 fetch_add, fetch_sub, fetch_and 等。本小节介绍基本 std::atomic 类型所具备的操作:

?
bool is_lock_free() const volatile noexcept ;
bool is_lock_free() const noexcept ;
?
void store (T val, memory_order sync = memory_order_seq_cst) volatile noexcept ;
void store (T val, memory_order sync = memory_order_seq_cst) noexcept ;
Memory Order 值 Memory Order 类型
memory_order_relaxed Relaxed
memory_order_release Release
memory_order_seq_cst Sequentially consistent
?
#include <iostream>       // std::cout
#include <atomic>         // std::atomic, std::memory_order_relaxed
#include <thread>         // std::thread
 
std::atomic< int > foo(0); // 全局的原子对象 foo
 
void set_foo( int x)
{
     foo.store(x, std::memory_order_relaxed); // 设置(store) 原子对象 foo 的值
}
 
void print_foo()
{
     int x;
     do {
         x = foo.load(std::memory_order_relaxed); // 读取(load) 原子对象 foo 的值
     } while (x == 0);
     std::cout << "foo: " << x << '\n' ;
}
 
int main ()
{
     std:: thread first(print_foo); // 线程 first 打印 foo 的值
     std:: thread second(set_foo, 10); // 线程 second 设置 foo 的值
     first.join();
     second.join();
     return 0;
}
?
T load (memory_order sync = memory_order_seq_cst) const volatile noexcept ;
T load (memory_order sync = memory_order_seq_cst) const noexcept ;
Memory Order 值 Memory Order 类型
memory_order_relaxed Relaxed
memory_order_consume Consume
memory_order_acquire Acquire
memory_order_seq_cst Sequentially consistent
?
#include <iostream>       // std::cout
#include <atomic>         // std::atomic, std::memory_order_relaxed
#include <thread>         // std::thread
 
std::atomic< int > foo(0); // 全局的原子对象 foo
 
void set_foo( int x)
{
     foo.store(x, std::memory_order_relaxed); // 设置(store) 原子对象 foo 的值
}
 
void print_foo()
{
     int x;
     do {
         x = foo.load(std::memory_order_relaxed); // 读取(load) 原子对象 foo 的值
     } while (x == 0);
     std::cout << "foo: " << x << '\n' ;
}
 
int main ()
{
     std:: thread first(print_foo); // 线程 first 打印 foo 的值
     std:: thread second(set_foo, 10); // 线程 second 设置 foo 的值
     first.join();
     second.join();
     return 0;
}
?
operator T() const volatile noexcept ;
operator T() const noexcept ;
?
#include <iostream>       // std::cout
#include <atomic>         // std::atomic
#include <thread>         // std::thread, std::this_thread::yield
 
std::atomic< int > foo = 0;
std::atomic< int > bar = 0;
 
void set_foo( int x)
{
     foo = x;
}
 
void copy_foo_to_bar()
{
 
     // 如果 foo == 0,则该线程 yield,
     // 在 foo == 0 时, 实际也是隐含了类型转换操作,
     // 因此也包含了 operator T() const 的调用.
     while (foo == 0) std::this_thread::yield();
 
     // 实际调用了 operator T() const, 将foo 强制转换成 int 类型,
     // 然后调用 operator=().
     bar = static_cast < int >(foo);
}
 
void print_bar()
{
     // 如果 bar == 0,则该线程 yield,
     // 在 bar == 0 时, 实际也是隐含了类型转换操作,
     // 因此也包含了 operator T() const 的调用.
     while (bar == 0) std::this_thread::yield();
     std::cout << "bar: " << bar << '\n' ;
}
 
int main ()
{
     std:: thread first(print_bar);
     std:: thread second(set_foo, 10);
     std:: thread third(copy_foo_to_bar);
 
     first.join();
     second.join();
     third.join();
     return 0;
}

 

T exchange (T val, memory_order sync = memory_order_seq_cst) volatile noexcept;
T exchange (T val, memory_order sync = memory_order_seq_cst) noexcept;
Memory Order 值 Memory Order 类型
memory_order_relaxed Relaxed
memory_order_consume Consume
memory_order_acquire Acquire
memory_order_release Release
memory_order_acq_rel Acquire/Release
memory_order_seq_cst Sequentially consistent

请看下面例子,各个线程计数至 1M,首先完成计数任务的线程打印自己的 ID,

?
#include <iostream>       // std::cout
#include <atomic>         // std::atomic
#include <thread>         // std::thread
#include <vector>         // std::vector
 
std::atomic< bool > ready( false );
std::atomic< bool > winner( false );
 
void count1m ( int id)
{
     while (!ready) {}                  // wait for the ready signal
     for ( int i = 0; i < 1000000; ++i) {}   // go!, count to 1 million
     if (!winner.exchange( true )) { std::cout << "thread #" << id << " won!\n" ; }
};
 
int main ()
{
     std::vector<std:: thread > threads;
     std::cout << "spawning 10 threads that count to 1 million...\n" ;
     for ( int i = 1; i <= 10; ++i) threads.push_back(std:: thread (count1m,i));
     ready = true ;
     for ( auto & th : threads) th.join();
 
     return 0;
}
(1)
bool compare_exchange_weak (T& expected, T val,
           memory_order sync = memory_order_seq_cst) volatile noexcept;
bool compare_exchange_weak (T& expected, T val,
           memory_order sync = memory_order_seq_cst) noexcept;
(2)
bool compare_exchange_weak (T& expected, T val,
           memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_weak (T& expected, T val,
           memory_order success, memory_order failure) noexcept;
  • 相等,则用 val 替换原子对象的旧值。
  • 不相等,则用原子对象的旧值替换 expected ,因此调用该函数之后,如果被该原子对象封装的值与参数 expected 所指定的值不相等,expected 中的内容就是原子对象的旧值。
Memory Order 值 Memory Order 类型
memory_order_relaxed Relaxed
memory_order_consume Consume
memory_order_acquire Acquire
memory_order_release Release
memory_order_acq_rel Acquire/Release
memory_order_seq_cst Sequentially consistent
?
#include <iostream>       // std::cout
#include <atomic>         // std::atomic
#include <thread>         // std::thread
#include <vector>         // std::vector
 
// a simple global linked list:
struct Node { int value; Node* next; };
std::atomic<Node*> list_head( nullptr );
 
void append( int val)
{
     // append an element to the list
     Node* newNode = new Node{val, list_head};
 
     // next is the same as: list_head = newNode, but in a thread-safe way:
     while (!list_head.compare_exchange_weak(newNode->next,newNode)) {}
     // (with newNode->next updated accordingly if some other thread just appended another node)
}
 
int main ()
{
     // spawn 10 threads to fill the linked list:
     std::vector<std:: thread > threads;
     for ( int i = 0; i < 10; ++i) threads.push_back(std:: thread (append, i));
     for ( auto & th : threads) th.join();
 
     // print contents:
     for (Node* it = list_head; it!= nullptr ; it=it->next)
         std::cout << ' ' << it->value;
 
     std::cout << '\n' ;
 
     // cleanup:
     Node* it; while (it=list_head) {list_head=it->next; delete it;}
 
     return 0;
}
?
9 8 7 6 5 4 3 2 1 0

 

(1)
bool compare_exchange_strong (T& expected, T val,
           memory_order sync = memory_order_seq_cst) volatile noexcept;
bool compare_exchange_strong (T& expected, T val,
           memory_order sync = memory_order_seq_cst) noexcept;
(2)
bool compare_exchange_strong (T& expected, T val,
           memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_strong (T& expected, T val,
           memory_order success, memory_order failure) noexcept;
  • 相等,则用 val 替换原子对象的旧值。
  • 不相等,则用原子对象的旧值替换 expected ,因此调用该函数之后,如果被该原子对象封装的值与参数 expected 所指定的值不相等,expected 中的内容就是原子对象的旧值。
Memory Order 值 Memory Order 类型
memory_order_relaxed Relaxed
memory_order_consume Consume
memory_order_acquire Acquire
memory_order_release Release
memory_order_acq_rel Acquire/Release
memory_order_seq_cst Sequentially consistent
?
#include <iostream>       // std::cout
#include <atomic>         // std::atomic
#include <thread>         // std::thread
#include <vector>         // std::vector
 
// a simple global linked list:
struct Node { int value; Node* next; };
std::atomic<Node*> list_head( nullptr );
 
void append( int val)
{
     // append an element to the list
     Node* newNode = new Node{val, list_head};
 
     // next is the same as: list_head = newNode, but in a thread-safe way:
 
     while (!(list_head.compare_exchange_strong(newNode->next, newNode)));
     // (with newNode->next updated accordingly if some other thread just appended another node)
}
 
int main ()
{
     // spawn 10 threads to fill the linked list:
     std::vector<std:: thread > threads;
     for ( int i = 0; i < 10; ++i) threads.push_back(std:: thread (append, i));
     for ( auto & th : threads) th.join();
 
     // print contents:
     for (Node* it = list_head; it!= nullptr ; it=it->next)
         std::cout << ' ' << it->value;
 
     std::cout << '\n' ;
 
     // cleanup:
     Node* it; while (it=list_head) {list_head=it->next; delete it;}
 
     return 0;
}


好了,本文花了大量的篇幅介绍 std::atomic 基本类型,下一篇博客我会给大家介绍 C++11 的标准库中std::atomic 针对整形(integral)和指针类型的特化版本做了哪些改进。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/swartz_lubel/article/details/58352546

智能推荐

vue中页面跳转传值的几种方式_vue页面之间跳转穿参方式_一条大河全靠浪的博客-程序员秘密

一、router-linkURL路径:http://localhost:8081/#/test?userid=1&amp;amp;amp;amp;lt;router-link :to=&amp;amp;amp;quot;{path:'/test',query: {userid: id}}&amp;amp;amp;quot;&amp;amp;amp;amp;gt;跳转&amp;amp;amp;amp;lt;/router-link&amp;amp;amp;amp;gt;收:var id = t

R语言进行EDA ——ggplot 图形分面、直方图 和频率多边形_r语言如何绘制频数多边形_可爱的红薯的博客-程序员秘密

分面通常使用绘图方法+①facet_wrap(~varible)/facet_wrap(formula)  较适用于单个变量②facet_grid(vertical ~ horizion)/facet_grid(formula)  较适用于多个变量详细讲解可参考 http://www.cookbook-r.com/Graphs/Facets_(ggplot2)/其他图形调整1、转换数据### Tr...

CMake Error: The current CMakeCache.txt directory is different解决办法_hi0812的博客-程序员秘密

最近使用rasa时,安装Mitie。根据CSDN博主「无名之辈FTER」的原创文章原文链接:https://blog.csdn.net/AndrExpert/article/details/104328946离线安装的方式首先,下载MITIE源码GitHub - mit-nlp/MITIE: MITIE: library and tools for information extraction和中文词向量模型total_word_feature_extractor_zh.dat;其次,安装V

手动启动Remote Desktop Services服务,报错提示:“系统无法找到指定文件” ,该如何解决_rdp启动找不到指定模块_不会游泳的饺子的博客-程序员秘密

手动启动Remote Desktop Services服务,报错提示:“系统无法找到指定文件”解决方法:1、打开regedit,找到路径HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\TermService\Parameters,发现少了一个二制文件serviceDLL。2、手动创建,右键新建--&gt;可扩充字符段值,设置名称...

Spring、SpringMVC、Mybatics整合导包、配置【详细项目】_spring-tx导哪个包_yunfeather的博客-程序员秘密

Spring、SpringMVC、Mybatics整合导包、配置0、目录:1、导包:Spring【总整合开发包】:提取码:ieqo【ioc核心】:提取码:7ijmcommons-logging-1.1.3.jar spring-aop-4.0.0.RELEASE.jar spring-beans-4.0.0.RELEASE.jar spring-context-4.0.0.RELEASE.jar spring-core-4.0.0.RELEASE.jar...

@程序员:爱我你怕了吗?用一句话形容你身边的程序员_程序员喜欢你的9大表现_千锋python和唐唐的博客-程序员秘密

程序员是一个怎样的群体?近年来,随着程序员的崛起,关于他们的话题越来越多前阵子微博上有条新闻标题叫:年薪百万,却被亲妈拍卖。看到这标题,着实吓一跳,进入网页查看一番才清楚事情原委被拍卖的儿子是程序员,上海人,年薪百万,36岁还没有对象,这位大妈实在没招了,便在网上拍卖儿子,并承若结婚后退全款有人劝大妈:儿子晚点结婚没关系。大妈:哎呦,他好几个同事都已经秃顶了在线求儿子心里阴影...

随便推点

socket通信显示连接被拒绝问题总结_socket连接被拒绝_一颗简单的心的博客-程序员秘密

socket通信方式 通常使用的是socket通信模式为c/s模式,就是通过服务端创建连接,并绑定监听相关的端口,客户端通过连接至相应的端口,实现使用tcp的三次握手来进行可靠性连接,从而达到数据传输。如果对应的客户端和服务端在同一台服务器上,因是数据内部通信方式,可直接相连接。但是当我们的客户端和服务端分别部署在不同的服务器上,有时候会出现客户端连接的时候提示connect r...

软件工程小组1 项目设计_akecz80824的博客-程序员秘密

需求分析:过往实事---小中学写作文常需查找好词句来增料,然而每到用时方恨少询问同学以及邻家学生---都有过无米下炊的烦恼,新闻报道---前些年常有什么“马爱牛”等用典陈旧反复的弊病语文教育现状---过于偏重写作方法教学,且谈的多写的少,导致口若悬河提笔无字最后成品:专题网站,以网站网页的方式实时呈现,随时查找随时获取方法:网络广泛扒取,SVM算法甄选优势:从半自动走向自动-...

用python找出一个txt文件中的重复数据,并将重复数据输出成另一个txt文件_zouxiaolv的博客-程序员秘密

假设你的文件名是a.txt,写到b.txtd = {}for line in open('a.txt'): d[line] = d.get(line, 0) + 1 fd = open('b.txt', 'w')for k, v in d.items(): if v &gt; 1: fd.write(k)fd.close()...

通过手机号定位归属地_weixin_30482383的博客-程序员秘密

  工作中,很多地方,都存在只知道手机号,同时也想知道这个手机号的归属地的情况。  本功能,即可实现这个要求。同时,可在此基础上做调整,实现其它功能,如制作一个属于自己的手机号段归属库等。。。  实现思路:通过网上提供的免费查询接口,取得返回信息,并对返回信息进行解析处理,获取自己需要的数据。  使用控件:LitJson.dll (LitJson.dll下载 或到网上搜索)  代...

IMS:InputManagerService启动简要_android s inputflinger_xhBruce的博客-程序员秘密

InputManagerService启动简要Android系统启动Zygote -&gt; SystemServer -&gt; new SystemServer().run() -&gt; startOtherServices(t) -&gt; new InputManagerService(context);ANR InputDispatching TimeOut超时判断这篇也有相关InputReader\InputDispatcher重要线程启动图进入InputManagerServ

spark集群启动后WorkerUI界面看不到Workers解决_spark集群启动没有worker_Tlimited的博客-程序员秘密

最近在搭spark集群的时候,成功启动集群,但是访问master的WorkerUI界面却看不到子节点,也就是worker id那里为空的,如图: 解决这个问题,关键是改spark的conf下面的spark-env.sh文件: 注意点就是,下面的masterid必须是ip,之前填master,能启动,但是界面看不到worker。 master配置:export JAVA_HOME=/o...

推荐文章

热门文章

相关标签