sudo dpkg --configure -a的作用-程序员宅基地

sudo dpkg --configure -a的作用

昨天下载non-free flash的时候误以为卡住了,于是强行关闭KpackageKit,导致从此以后无法使用它安装任何程序,因为在程序的记录当中non-free flash的安装并没有完成。怎么都解决不了,于是在网上找,最后在ubuntuforums.org上找到了解决方法,


帖子的标题是:《  Only one software management tool is allowed to run at the same time 》,其中有一条回复:
type
dpkg --configure -a
to see what's happening, and CTRL-C to stop it.




解决了问题,最后在红联上找到了解释:
作者: wangdu2002 发布日期:  2009-4-24  
利用底层的dpkg包管理工具修复一些包安装错误。



不过奇怪的是,在dpkg的用法上,并没有configure这个参数。

顺便贴下修复过程的终端记录(实际上就是把没下完的包下载完了)

lee@lee-desktop:~$ sudo dpkg --configure -a
正在设置 flashplugin-installer (10.0.22.87ubuntu2) ...
Downloading...                                         
--2009-06-12 16:28:24--  http://archive.canonical.com/pool/partner/a/adobe-flashplugin/adobe-flashplugin_10.0.22.87.orig.tar.gz
正在解析主机 archive.canonical.com... 91.189.90.142                                                                             
正在连接 archive.canonical.com|91.189.90.142|:80... 已连接。                                                                    
已发出 HTTP 请求,正在等待回应... 200 OK                                                                                        
长度: 3968445 (3.8M) [application/x-gzip]                                                                                      
保存到‘./adobe-flashplugin_10.0.22.87.orig.tar.gz’                                                                              

       0K .......... .......... .......... .......... ..........  1% 6.34K 10m3s
      50K .......... .......... .......... .......... ..........  2% 9.16K 8m24s
     100K .......... .......... .......... .......... ..........  3% 2.61K 13m28s
     150K .......... .......... .......... .......... ..........  5% 5.59K 12m42s                                                                                     
     200K .......... .......... .......... .......... ..........  6% 5.91K 12m4s                                                                                      
     250K .......... .......... .......... .......... ..........  7% 7.23K 11m18s                                                                                     
     300K .......... .......... .......... .......... ..........  9% 6.69K 10m48s                                                                                     
     350K .......... .......... .......... .......... .......... 10% 8.25K 10m12s                                                                                     
     400K .......... .......... .......... .......... .......... 11% 10.7K 9m31s                                                                                      
     450K .......... .......... .......... .......... .......... 12% 6.01K 9m23s                                                                                      
     500K .......... .......... .......... .......... .......... 14% 6.17K 9m13s                                                                                      
     550K .......... .......... .......... .......... .......... 15% 4.94K 9m15s                                                                                      
     600K .......... .......... .......... .......... .......... 16% 7.67K 8m56s                                                                                      
     650K .......... .......... .......... .......... .......... 18% 4.44K 9m1s                                                                                       
     700K .......... .......... .......... .......... .......... 19% 11.7K 8m35s                                                                                      
     750K .......... .......... .......... .......... .......... 20% 10.0K 8m14s                                                                                      
     800K .......... .......... .......... .......... .......... 21% 8.11K 8m0s                                                                                       
     850K .......... .......... .......... .......... .......... 23% 5.81K 7m54s                                                                                      
     900K .......... .......... .......... .......... .......... 24% 5.08K 7m52s                                                                                      
     950K .......... .......... .......... .......... .......... 25% 6.47K 7m43s                                                                                      
1000K .......... .......... .......... .......... .......... 27% 6.49K 7m34s                                                                                      
1050K .......... .......... .......... .......... .......... 28% 6.29K 7m26s                                                                                      
1100K .......... .......... .......... .......... .......... 29% 8.60K 7m12s                                                                                      
1150K .......... .......... .......... .......... .......... 30% 13.7K 6m55s                                                                                      
1200K .......... .......... .......... .......... .......... 32% 5.46K 6m50s                                                                                      
1250K .......... .......... .......... .......... .......... 33% 2.82K 7m2s                                                                                       
1300K .......... .......... .......... .......... .......... 34% 3.46K 7m5s
1350K .......... .......... .......... .......... .......... 36% 4.66K 7m1s
1400K .......... .......... .......... .......... .......... 37% 4.99K 6m55s
1450K .......... .......... .......... .......... .......... 38% 7.16K 6m44s
1500K .......... .......... .......... .......... .......... 39% 9.22K 6m31s
1550K .......... .......... .......... .......... .......... 41% 6.45K 6m22s
1600K .......... .......... .......... .......... .......... 42% 9.85K 6m9s
1650K .......... .......... .......... .......... .......... 43% 6.78K 5m59s
1700K .......... .......... .......... .......... .......... 45% 8.82K 5m48s
1750K .......... .......... .......... .......... .......... 46% 7.96K 5m38s
1800K .......... .......... .......... .......... .......... 47% 5.92K 5m30s
1850K .......... .......... .......... .......... .......... 49% 10.1K 5m18s
1900K .......... .......... .......... .......... .......... 50% 6.09K 5m10s
1950K .......... .......... .......... .......... .......... 51% 6.71K 5m2s
2000K .......... .......... .......... .......... .......... 52% 9.79K 4m51s
2050K .......... .......... .......... .......... .......... 54% 11.5K 4m40s
2100K .......... .......... .......... .......... .......... 55% 5.42K 4m33s
2150K .......... .......... .......... .......... .......... 56% 11.6K 4m23s
2200K .......... .......... .......... .......... .......... 58% 8.59K 4m13s
2250K .......... .......... .......... .......... .......... 59% 4.67K 4m8s
2300K .......... .......... .......... .......... .......... 60% 3.68K 4m3s
2350K .......... .......... .......... .......... .......... 61% 6.79K 3m55s
2400K .......... .......... .......... .......... .......... 63% 4.10K 3m50s
2450K .......... .......... .......... .......... .......... 64% 5.29K 3m42s
2500K .......... .......... .......... .......... .......... 65% 4.05K 3m36s
2550K .......... .......... .......... .......... .......... 67% 5.25K 3m29s
2600K .......... .......... .......... .......... .......... 68% 5.12K 3m21s
2650K .......... .......... .......... .......... .......... 69% 5.30K 3m14s
2700K .......... .......... .......... .......... .......... 70% 6.66K 3m5s
2750K .......... .......... .......... .......... .......... 72% 6.92K 2m57s
2800K .......... .......... .......... .......... .......... 73% 8.79K 2m47s
2850K .......... .......... .......... .......... .......... 74% 5.80K 2m39s
2900K .......... .......... .......... .......... .......... 76% 4.10K 2m33s
2950K .......... .......... .......... .......... .......... 77% 15.2K 2m23s
3000K .......... .......... .......... .......... .......... 78% 8.80K 2m14s
3050K .......... .......... .......... .......... .......... 79% 6.78K 2m6s
3100K .......... .......... .......... .......... .......... 81% 5.68K 1m58s
3150K .......... .......... .......... .......... .......... 82% 9.81K 1m49s
3200K .......... .......... .......... .......... .......... 83% 5.62K 1m41s
3250K .......... .......... .......... .......... .......... 85% 4.15K 94s
3300K .......... .......... .......... .......... .......... 86% 8.75K 85s
3350K .......... .......... .......... .......... .......... 87% 5.77K 77s
3400K .......... .......... .......... .......... .......... 89% 4.61K 69s
3450K .......... .......... .......... .......... .......... 90% 10.1K 61s
3500K .......... .......... .......... .......... .......... 91% 10.1K 52s
3550K .......... .......... .......... .......... .......... 92% 15.3K 44s
3600K .......... .......... .......... .......... .......... 94% 7.01K 36s
3650K .......... .......... .......... .......... .......... 95% 4.07K 28s
3700K .......... .......... .......... .......... .......... 96% 12.4K 20s
3750K .......... .......... .......... .......... .......... 98% 11.4K 12s
3800K .......... .......... .......... .......... .......... 99% 12.5K 4s
3850K .......... .......... .....                             100% 7.25K=10m11s
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qqqqqwa1/article/details/9187543

智能推荐

业界首个视频识别与定位工具集PaddleVideo重磅更新-程序员宅基地

飞桨 (PaddlePaddle) 致力于让深度学习技术的创新与应用更简单。7 月初,随着 Paddle Fluid 1.5 版本的发布,国内业界首个视频识别与定位工具集 PaddleVideo 也迎来了重磅更新。PaddleVideo 在实际工业界可以形成很多具体应用,包括:视频精彩片段预测、关键镜头定位、视频剪辑等任务,例如定位 NBA 篮球赛视频中扣篮镜头,电视剧中的武打镜头等。如下图所...

设计模式——设计模式选择——创建型-程序员宅基地

对象创建型模式Abstract Factory(Kit)——抽象工厂意图动机适用性结构参与者协作效果它分离了具体的类它使得易于交换产品系列它有利于产品的一致性难以支持新种类的产品实现将工厂作为单件创建产品定义可扩展的工厂相关模式Builder——生成器意图动机适用性结构参与者协作效果它使你可以改变一个产品的内部表示它将构造代码和...

layui中laydate时间插件处理(开始时间与结束时间之间控制)_idea导入layui日期插件开始结束-程序员宅基地

layui中laydate时间插件处理-开始时间与结束时间之间控制 //我这里默认2018-11-08 00:00:00格式 var nowTime = new Date();//得到当前日期 //日期 var startTime = laydate.render({ elem: '#starTime' ,format: 'yyyy-MM-dd HH:mm:ss' ..._idea导入layui日期插件开始结束

Docker 容器使用问题汇总_could not set property: failed to set static hostn-程序员宅基地

1、问题1:尚未使用systemd作为初始化系统(PID 1)引导系统System has not been booted with systemd as init system (PID 1). Can't operate.Failed to create bus connection: Host is down解决方案:/sbin/init例如:CentOS8docker r..._could not set property: failed to set static hostname: device or resource bu

Binary XML file line #19: Attempt to invoke virtual method 'boolean java.lang.String.equals(java....-程序员宅基地

APP中需要实现LayoutInflater布局加载器动态加载布局,然而开启程序一运行就闪退。。。FATAL EXCEPTION: main Process: com.lwp.justtest, PID: 6054 ...

securecrtp32位_SecureCRT 32位下载-程序员宅基地

SecureCRT是一个可通过SSH连接Linux服务器的终端仿真程序,具有支持多种安全性的数据传输协议、配置容易、支持监视并自动记录事件的特点,是目前主流的在远程访问Linux'服务器设备的SSH连接工具之一。SecureCRT有32位版和64位版,这里为您提供的是32位版本,如果需要64位版本可下载SecureCRT 64位版。SecureCRT快捷命令介绍Alt + Enter -- 全屏A..._securecrt32位

随便推点

使用 Laragon 在 Windows 中搭建 PHP开发环境及常见问题解决_laragon下载-程序员宅基地

使用 Laragon 在 Windows 中搭建 PHP开发环境及常见问题解决PHP的集成开发环境市面上已经有很多非常成熟好用的集成软件了,比如WAMP, Xampp, PhpStudy等,如今我发现了另一款非常好用的集成软件Laragon,可能更有利于新手通过PHP集成开发环境,进行web项目开发。安装我们可以在官网https://laragon.org/download/下载L..._laragon下载

Docker冲顶技术热词,微服务应用热度不减,中国云原生开发者真实现状如何?...-程序员宅基地

导读:在数字化转型浪潮下,企业上云已成为企业和政府的普遍共识,云原生开发者迎来了最好的时代。从云原生概念提出后的爆炸式增长,到近年来进入稳定期,开发者也逐渐在各个技术领域中得到历练、沉淀和..._中国开发者省份占比

PowerShell实现“机器人定时在企业微信群中发送消息”功能(上)-程序员宅基地

PowerShell实现“机器人定时在企业微信群中发送消息”功能(上)本章实现由于篇幅较多,会拆分为上、下两部分来写。本章实现:01.如何在企业微信中添加群机器人02.简单用机器人发送一条消息(postman实现)03.powershell打开04.简单用机器人发送一条消息(powershell实现)05.常见问题下章实现06.机器人定时在企业微信群中发送消息功能背景最近在...

Springcloud微服务概述_hjcloud微服务_西瓜程序设计的博客-程序员宅基地

1. 微服务的概述常见的面试题目:1. 什么是微服务?2. 微服务之间是如何独立通讯的?3. SpringCloud 和 Dubbo有那些区别?4. SpringBoot 和 SpringCloud,请谈谈你对他们的理解5. 什么是服务熔断?什么是服务降级?6. 微服务的优缺点分别是什么?说下你在项目开发中遇到的坑7. 你所知道的微服务技术栈有哪些?列举一二8. Eureka和Zookeeper都可以提供服务注册与发现的功能,请说说两者的区别什么是微服务?微服务(Microser_hjcloud微服务

1146: [CTSC2008]网络管理Network (线段树套平衡树+二分+树链剖分)-程序员宅基地

O(nlogn^4)#include#include#includeusing namespace std;inline int read(){ int x=0,f=1;char ch=getchar(); while(ch'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc

Java:批量插入数据_java8 批量插入2000条数据-程序员宅基地

import com.google.common.collect.Lists; import org.springframework.util.CollectionUtils; private void add() { List<CeshiBean> ceshiList = new ArrayList<CeshiBean>(); if(Col..._java8 批量插入2000条数据