SHA256 和 HMAC-SHA256 的C语言实现_hmacsha256 c-程序员宅基地

#ifndef PBKDF2_SHA256_INCLUDE
#define PBKDF2_SHA256_INCLUDE

#define SHA256_BLOCKLEN  64ul //size of message block buffer
#define SHA256_DIGESTLEN 32ul //size of digest in uint8_t
#define SHA256_DIGESTINT 8ul  //size of digest in uint32_t

// #ifndef PBKDF2_SHA256_STATIC
// #define PBKDF2_SHA256_DEF extern
// #else
// #define PBKDF2_SHA256_DEF static
// #endif

#include "stdint.h"

#define PBKDF2_SHA256_DEF extern

typedef struct sha256_ctx_t
{
	uint64_t len;                 // processed message length
	uint32_t h[SHA256_DIGESTINT]; // hash state
	uint8_t buf[SHA256_BLOCKLEN]; // message block buffer
} SHA256_CTX;

PBKDF2_SHA256_DEF void sha256_init(SHA256_CTX *ctx);
PBKDF2_SHA256_DEF void sha256_update(SHA256_CTX *ctx, const uint8_t *m, uint32_t mlen);
// resets state: calls sha256_init
PBKDF2_SHA256_DEF void sha256_final(SHA256_CTX *ctx, uint8_t *md);

typedef struct hmac_sha256_ctx_t
{
	uint8_t buf[SHA256_BLOCKLEN]; // key block buffer, not needed after init
	uint32_t h_inner[SHA256_DIGESTINT];
	uint32_t h_outer[SHA256_DIGESTINT];
	SHA256_CTX sha;
} HMAC_SHA256_CTX;

PBKDF2_SHA256_DEF void hmac_sha256_init(HMAC_SHA256_CTX *hmac, const uint8_t *key, uint32_t keylen);
PBKDF2_SHA256_DEF void hmac_sha256_update(HMAC_SHA256_CTX *hmac, const uint8_t *m, uint32_t mlen);
// resets state to hmac_sha256_init
PBKDF2_SHA256_DEF void hmac_sha256_final(HMAC_SHA256_CTX *hmac, uint8_t *md);

PBKDF2_SHA256_DEF void pbkdf2_sha256(HMAC_SHA256_CTX *ctx,
    const uint8_t *key, uint32_t keylen, const uint8_t *salt, uint32_t saltlen, uint32_t rounds,
    uint8_t *dk, uint32_t dklen);

#endif // PBKDF2_SHA256_INCLUDE

//------------------------------------------------------------------------------

#ifdef PBKDF2_SHA256_IMPLEMENTATION

#include <string.h>

//#define ROR(n,k) ((n >> k) | (n << (32 - k)))

static uint32_t ror(uint32_t n, uint32_t k)
{
	return (n >> k) | (n << (32 - k));
}

#define ROR(n,k) ror(n,k)

#define CH(x,y,z)  (z ^ (x & (y ^ z)))
#define MAJ(x,y,z) ((x & y) | (z & (x | y)))
#define S0(x)      (ROR(x, 2) ^ ROR(x,13) ^ ROR(x,22))
#define S1(x)      (ROR(x, 6) ^ ROR(x,11) ^ ROR(x,25))
#define R0(x)      (ROR(x, 7) ^ ROR(x,18) ^ (x>>3))
#define R1(x)      (ROR(x,17) ^ ROR(x,19) ^ (x>>10))

static const uint32_t K[64] =
{
	0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
	0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
	0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
	0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
	0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
	0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
	0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
	0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

static void sha256_transform(SHA256_CTX *s, const uint8_t *buf)
{
	uint32_t t1, t2, a, b, c, d, e, f, g, h, m[64];
	uint32_t i, j;
	
	for (i = 0, j = 0; i < 16; i++, j += 4)
	{
		m[i] = (uint32_t) buf[j] << 24 | (uint32_t) buf[j + 1] << 16 |
		       (uint32_t) buf[j + 2] << 8 | (uint32_t) buf[j + 3];
	}
	for (; i < 64; i++)
	{
		m[i] = R1(m[i - 2]) + m[i - 7] + R0(m[i - 15]) + m[i - 16];
	}
	a = s->h[0];
	b = s->h[1];
	c = s->h[2];
	d = s->h[3];
	e = s->h[4];
	f = s->h[5];
	g = s->h[6];
	h = s->h[7];
	for (i = 0; i < 64; i++)
	{
		t1 = h + S1(e) + CH(e, f, g) + K[i] + m[i];
		t2 = S0(a) + MAJ(a, b, c);
		h = g;
		g = f;
		f = e;
		e = d + t1;
		d = c;
		c = b;
		b = a;
		a = t1 + t2;
	}
	s->h[0] += a;
	s->h[1] += b;
	s->h[2] += c;
	s->h[3] += d;
	s->h[4] += e;
	s->h[5] += f;
	s->h[6] += g;
	s->h[7] += h;
}

PBKDF2_SHA256_DEF void sha256_init(SHA256_CTX *s)
{
	s->len = 0;
	
	s->h[0] = 0x6a09e667;
	s->h[1] = 0xbb67ae85;
	s->h[2] = 0x3c6ef372;
	s->h[3] = 0xa54ff53a;
	s->h[4] = 0x510e527f;
	s->h[5] = 0x9b05688c;
	s->h[6] = 0x1f83d9ab;
	s->h[7] = 0x5be0cd19;
}

PBKDF2_SHA256_DEF void sha256_final(SHA256_CTX *s, uint8_t *md)
{
	uint32_t r = s->len % SHA256_BLOCKLEN;
	int i;
	
	//pad
	s->buf[r++] = 0x80;
	if (r > 56)
	{
		memset(s->buf + r, 0, SHA256_BLOCKLEN - r);
		r = 0;
		sha256_transform(s, s->buf);
	}
	memset(s->buf + r, 0, 56 - r);
	s->len *= 8;
	s->buf[56] = s->len >> 56;
	s->buf[57] = s->len >> 48;
	s->buf[58] = s->len >> 40;
	s->buf[59] = s->len >> 32;
	s->buf[60] = s->len >> 24;
	s->buf[61] = s->len >> 16;
	s->buf[62] = s->len >> 8;
	s->buf[63] = s->len;
	sha256_transform(s, s->buf);
	
	for (i = 0; i < SHA256_DIGESTINT; i++)
	{
		md[4 * i    ] = s->h[i] >> 24;
		md[4 * i + 1] = s->h[i] >> 16;
		md[4 * i + 2] = s->h[i] >> 8;
		md[4 * i + 3] = s->h[i];
	}
	sha256_init(s);
}

PBKDF2_SHA256_DEF void sha256_update(SHA256_CTX *s, const uint8_t *m, uint32_t len)
{
	const uint8_t *p = m;
	uint32_t r = s->len % SHA256_BLOCKLEN;
	
	s->len += len;
	if (r)
	{
		if (len + r < SHA256_BLOCKLEN)
		{
			memcpy(s->buf + r, p, len);
			return;
		}
		memcpy(s->buf + r, p, SHA256_BLOCKLEN - r);
		len -= SHA256_BLOCKLEN - r;
		p += SHA256_BLOCKLEN - r;
		sha256_transform(s, s->buf);
	}
	for (; len >= SHA256_BLOCKLEN; len -= SHA256_BLOCKLEN, p += SHA256_BLOCKLEN)
	{
		sha256_transform(s, p);
	}
	memcpy(s->buf, p, len);
}

#define INNER_PAD '\x36'
#define OUTER_PAD '\x5c'

PBKDF2_SHA256_DEF void hmac_sha256_init(HMAC_SHA256_CTX *hmac, const uint8_t *key, uint32_t keylen)
{
	SHA256_CTX *sha = &hmac->sha;
	uint32_t i;
	
	if (keylen <= SHA256_BLOCKLEN)
	{
		memcpy(hmac->buf, key, keylen);
		memset(hmac->buf + keylen, '\0', SHA256_BLOCKLEN - keylen);
	}
	else
	{
		sha256_init(sha);
		sha256_update(sha, key, keylen);
		sha256_final(sha, hmac->buf);
		memset(hmac->buf + SHA256_DIGESTLEN, '\0', SHA256_BLOCKLEN - SHA256_DIGESTLEN);
	}
	
	for (i = 0; i < SHA256_BLOCKLEN; i++)
	{
		hmac->buf[ i ] = hmac->buf[ i ] ^ OUTER_PAD;
	}
	
	sha256_init(sha);
	sha256_update(sha, hmac->buf, SHA256_BLOCKLEN);
	// copy outer state
	memcpy(hmac->h_outer, sha->h, SHA256_DIGESTLEN);
	
	for (i = 0; i < SHA256_BLOCKLEN; i++)
	{
		hmac->buf[ i ] = (hmac->buf[ i ] ^ OUTER_PAD) ^ INNER_PAD;
	}
	
	sha256_init(sha);
	sha256_update(sha, hmac->buf, SHA256_BLOCKLEN);
	// copy inner state
	memcpy(hmac->h_inner, sha->h, SHA256_DIGESTLEN);
}

PBKDF2_SHA256_DEF void hmac_sha256_update(HMAC_SHA256_CTX *hmac, const uint8_t *m, uint32_t mlen)
{
	sha256_update(&hmac->sha, m, mlen);
}

PBKDF2_SHA256_DEF void hmac_sha256_final(HMAC_SHA256_CTX *hmac, uint8_t *md)
{
	SHA256_CTX *sha = &hmac->sha;
	sha256_final(sha, md);
	
	// reset sha to outer state
	memcpy(sha->h, hmac->h_outer, SHA256_DIGESTLEN);
	sha->len = SHA256_BLOCKLEN;
	
	sha256_update(sha, md, SHA256_DIGESTLEN);
	sha256_final(sha, md); // md = D(outer || D(inner || msg))
	
	// reset sha to inner state -> reset hmac
	memcpy(sha->h, hmac->h_inner, SHA256_DIGESTLEN);
	sha->len = SHA256_BLOCKLEN;
}

PBKDF2_SHA256_DEF void pbkdf2_sha256(HMAC_SHA256_CTX *hmac,
    const uint8_t *key, uint32_t keylen, const uint8_t *salt, uint32_t saltlen, uint32_t rounds,
    uint8_t *dk, uint32_t dklen)
{
	uint8_t *U;
	uint8_t *T;
	uint8_t count[4];
	uint32_t i, j, k;
	uint32_t len;

	uint32_t hlen = SHA256_DIGESTLEN;
	uint32_t l = dklen / hlen + ((dklen % hlen) ? 1 : 0);
	uint32_t r = dklen - (l - 1) * hlen;
	
	hmac_sha256_init(hmac, key, keylen);
	
	U = hmac->buf;
	T = dk;
	
	len = hlen;
	for (i = 1; i <= l; i++)
	{
		if (i == l) { len = r; }
		count[0] = (i >> 24) & 0xFF;
		count[1] = (i >> 16) & 0xFF;
		count[2] = (i >>  8) & 0xFF;
		count[3] = (i) & 0xFF;
		hmac_sha256_update(hmac, salt, saltlen);
		hmac_sha256_update(hmac, count, 4);
		hmac_sha256_final(hmac, U);
		memcpy(T, U, len);
		for (j = 1; j < rounds; j++)
		{
			hmac_sha256_update(hmac, U, hlen);
			hmac_sha256_final(hmac, U);
			for (k = 0; k < len; k++)
			{
				T[k] ^= U[k];
			}
		}
		T += len;
	}
	
}

#endif // PBKDF2_SHA256_IMPLEMENTATION

    使用方法示例

	void compute_sha_ex(unsigned char* dest, const uint8_t *msg, uint32_t mlen)
	{
		uint8_t md[SHA256_DIGESTLEN] = {0};
		SHA256_CTX sha;
		sha256_init(&sha);
		sha256_update(&sha, msg, mlen);
		sha256_final(&sha, md);
		memcpy(dest, md, SHA256_DIGESTLEN);
	}

	void compute_hmac_ex(unsigned char* dest, const uint8_t *key, uint32_t klen, const uint8_t *msg, uint32_t mlen)
	{
		uint8_t md[SHA256_DIGESTLEN] = {0};
		HMAC_SHA256_CTX hmac;
		hmac_sha256_init(&hmac, key, klen);
		hmac_sha256_update(&hmac, msg, mlen);
		hmac_sha256_final(&hmac, md);
		memcpy(dest, md, SHA256_DIGESTLEN);
	}

	unsigned char dest[32] = {0};
	string key("i am key");
	string msg("i am msg");
	compute_sha_ex(dest, (const uint8_t *)msg.c_str(), msg.length());
	compute_hmac_ex(dest, (const uint8_t *)key.c_str(), key.length(), (const uint8_t *)msg.c_str(), msg.length());


    

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/miniphoenix/article/details/110135164

智能推荐

springaop无法拦截service方法中调用_aop 不能拦截service-程序员宅基地

文章浏览阅读1k次。问题描述:springaop无法拦截service方法中调用,在service类中方法A调用带有切面注解的方法B,切面失效问题分析:AOP底层实现: 拦截器的实现原理就是动态代理,实现AOP机制。Spring 的代理实现有两种:一是基于 JDK Dynamic Proxy 技术而实现的;二是基于 CGLIB 技术而实现的。如果目标对象实现了接口,在默认情况下Spring会采用JDK的动态代理实现AOP; ***总之是类(接口类)级别的代理***;解决思路: 只要将方法A调用方法B过程中添加_aop 不能拦截service

Java实现二维码批量生成_java批量生成二维码-程序员宅基地

文章浏览阅读645次。Java批量生成二维码实例_java批量生成二维码

CentOS8 安装数据库_centos8 安装vastbase数据库-程序员宅基地

文章浏览阅读961次。yum -y localinstall mysql80-community-release-el7-1.noarch.rpmpip3.6 install mycli_centos8 安装vastbase数据库

子类继承父类时各种属性的问题_一个子类继承另一个父类然后子类new对象属性分装不进去-程序员宅基地

文章浏览阅读2.2k次。普通属性子类可以继承父类的属性值,后续操作互不影响。静态属性:public class Main7 extends Father{ //static int test = 11; public static void main(String[] args) { test++; Father father = new Father(); System.out.printl..._一个子类继承另一个父类然后子类new对象属性分装不进去

摄像机内参与OpenGL_摄像机四个内参-程序员宅基地

文章浏览阅读2.4k次,点赞4次,收藏14次。参考转自:https://blog.csdn.net/yanglusheng/article/details/52268234https://blog.csdn.net/sunboyiris/article/details/780826991、 相机参数是三种不同的参数。相机的内参数是六个分别为:1/dx、1/dy、r、u0、v0、f。opencv1里的说内参数是4个其为fx、..._摄像机四个内参

随便推点

Day507.Linux下MySQL的安装与使用 -mysql-程序员宅基地

文章浏览阅读1.6k次,点赞6次,收藏12次。Linux下MySQL的安装与使用一、安装前说明1、Linux系统及工具的准备安装并启动好两台虚拟机: CentOS 7掌握克隆虚拟机的操作mac地址主机名ip地址UUID安装有 Xshell 和 Xftp 等访问CentOS系统的工具CentOS6和CentOS7在MySQL的使用中的区别防火墙:6是iptables,7是firewalld启动服务的命令:6是service,7是systemctl2、查看是否安装过MySQL如果你是用rpm安装, 检

python3 [爬虫实战] 微博爬虫京东客服之Selenium + Chrom浏览器的使用(上)_京东爬虫 对浏览器的要求-程序员宅基地

文章浏览阅读1k次。先暂时记录一下首先 Chrom浏览器一定要匹配好, 不能在百度搜索中下载最新的谷歌浏览器,我现在下的是版本50的浏览器。匹配的chromedriver.exe 是2.9的。32位的同样也使用64位的。 需要把chromedriver.exe 安装在谷歌浏览器的安装目录下,路径是:C:\Program Files (x86)\Google\Chrome\Application与chrome.ex_京东爬虫 对浏览器的要求

[转]十个完全免费的网页原型(线框图)工具_将网站直接转换成原型图-程序员宅基地

文章浏览阅读890次。网页的线框图是非常直观、但是也没什么技术上难点的东西。只需要你大概描出页面上需要的一些元素,比如头部、导航、页脚等等,最多再就是一些交互、内容区域什么的。但这对于任何网络应用的开发都是非常重要的。当然有很多种方法可以做这件事情,最简单的就是拿起纸和笔,但是在这篇文章中,我们要介绍的是一些非常高效好用的在线原型工具,并且他们完全免费。Lumzy 快速原型工具使用Lumzy你可以为你的应用创建_将网站直接转换成原型图

深度学习中关于样本不均衡问题的解决_深度学习重采样-程序员宅基地

文章浏览阅读1k次。深度学习中的样本不均衡问题_深度学习重采样

基于keras采用LSTM实现多标签文本分类(一)_keras lstm多分类-程序员宅基地

文章浏览阅读2.5k次。1.多标签即一条语句可能有多个类别划分。例如,这个酸菜鱼又酸又辣。属于酸和辣两个标签。在采用神经网络学习时,最后一层的激活函数应采用sigmoid激活函数,相当于对这条语句做了多个二分类。2.多分类即每条语句只有一个标签,在采用神经网络学习时,最后一层的激活函数应采用softmax激活函数,最后选取类别中的最大值作为预测结果。关于sigmoid和softmax 的区别此处再说明。本次数据集的格式为:关于LSTM的学习可以参考这篇。关于词向量化的方式,本文采用keras 内置Tokenizer A_keras lstm多分类

常用抓包工具分析_包分析工具-程序员宅基地

文章浏览阅读2.5w次,点赞3次,收藏38次。常用的抓包工具有: tcpdump (linux) wireshark (windows) tcpflow (linux) httpwatch (windows) 浏览器自带抓包工具 (windows)tcpdump (linux)tcpdump是linux下的抓包工具,一般使用比较习惯于,在linux下用tcpdump抓包,结果存入文件,把文件导入windows下用window..._包分析工具

推荐文章

热门文章

相关标签