yolov7改进优化之蒸馏(一)_yolov7知识蒸馏-程序员宅基地

技术标签: YOLO  yolo  计算机视觉  深度学习  目标检测  yolov7/8系列解读与实战  

最近比较忙,有一段时间没更新了,最近yolov7用的比较多,总结一下。上一篇yolov5及yolov7实战之剪枝_CodingInCV的博客-程序员宅基地 我们讲了通过剪枝来裁剪我们的模型,达到在精度损失不大的情况下,提高模型速度的目的。上一篇是从速度的角度,这一篇我们从检测性能的角度来改进yolov7(yolov5也类似)。
对于提高检测器的性能,我们除了可以从增加数据、修改模型结构、修改loss等模型本身的角度出发外,深度学习领域还有一个方式—蒸馏。简单的说,蒸馏就是让性能更强的模型(teacher, 参数量更大)来指导性能更弱student模型,从而提高student模型的性能。
蒸馏的方式有很多种,比较简单暴力的比如直接让student模型来拟合teacher模型的输出特征图,当然蒸馏也不是万能的,毕竟student模型和teacher模型的参数量有差距,student模型不一定能很好的学习teacher的知识,对于自己的任务有没有作用也需要尝试。
本篇选择的方法是去年CVPR上的针对目标检测的蒸馏算法:
yzd-v/FGD: Focal and Global Knowledge Distillation for Detectors (CVPR 2022) (github.com)
针对该方法的解读可以参考:FGD-CVPR2022:针对目标检测的焦点和全局蒸馏 - 知乎 (zhihu.com)
本篇暂时不涉及理论,重点在把这个方法集成到yolov7训练。步骤如下。

载入teacher模型

蒸馏首先需要有一个teacher模型,这个teacher模型一般和student同样结构,只是参数量更大、层数更多。比如对于yolov5,可以尝试用yolov5m来蒸馏yolov5s。
train.py增加一个命令行参数:

    parser.add_argument("--teacher-weights", type=str, default="", help="initial weights path")

在train函数中载入teacher weights,过程与原有的载入过程类似,注意,DP或者DDP模型也要对teacher模型做对应的处理。

# teacher model
    if opt.teacher_weights:
        teacher_weights = opt.teacher_weights
        # with torch_distributed_zero_first(rank):
        #     teacher_weights = attempt_download(teacher_weights)  # download if not found locally
        teacher_model = Model(teacher_weights, ch=3, nc=nc).to(device)  # create    
        # load state_dict
        ckpt = torch.load(teacher_weights, map_location=device)  # load checkpoint
        state_dict = ckpt["model"].float().state_dict()  # to FP32
        teacher_model.load_state_dict(state_dict, strict=True)  # load
        #set to eval
        teacher_model.eval()
        #set IDetect to train mode
        # teacher_model.model[-1].train()
        logger.info(f"Load teacher model from {teacher_weights}")  # report

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)
        if opt.teacher_weights:
            teacher_model = torch.nn.DataParallel(teacher_model)
            
	 # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info("Using SyncBatchNorm()")
        if opt.teacher_weights:
	        teacher_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(teacher_model).to(device)

teacher模型不进行梯度计算,因此:

if opt.teacher_weights:
        for param in teacher_model.parameters():
            param.requires_grad = False

蒸馏Loss

蒸馏loss是计算teacher模型的一层或者多层与student的对应层的相似度,监督student模型向teacher模型靠近。对于yolov7,可以去监督三个特征层。
参考FGD的开源代码,我们在loss.py中增加一个FeatureLoss类, 参数暂时使用默认:

class FeatureLoss(nn.Module):

    """PyTorch version of `Feature Distillation for General Detectors`
   
    Args:
        student_channels(int): Number of channels in the student's feature map.
        teacher_channels(int): Number of channels in the teacher's feature map. 
        temp (float, optional): Temperature coefficient. Defaults to 0.5.
        name (str): the loss name of the layer
        alpha_fgd (float, optional): Weight of fg_loss. Defaults to 0.001
        beta_fgd (float, optional): Weight of bg_loss. Defaults to 0.0005
        gamma_fgd (float, optional): Weight of mask_loss. Defaults to 0.0005
        lambda_fgd (float, optional): Weight of relation_loss. Defaults to 0.000005
    """
    def __init__(self,
                 student_channels,
                 teacher_channels,
                 temp=0.5,
                 alpha_fgd=0.001,
                 beta_fgd=0.0005,
                 gamma_fgd=0.001,
                 lambda_fgd=0.000005,
                 ):
        super(FeatureLoss, self).__init__()
        self.temp = temp
        self.alpha_fgd = alpha_fgd
        self.beta_fgd = beta_fgd
        self.gamma_fgd = gamma_fgd
        self.lambda_fgd = lambda_fgd
    
        if student_channels != teacher_channels:
            self.align = nn.Conv2d(student_channels, teacher_channels, kernel_size=1, stride=1, padding=0)
        else:
            self.align = None
        
        self.conv_mask_s = nn.Conv2d(teacher_channels, 1, kernel_size=1)
        self.conv_mask_t = nn.Conv2d(teacher_channels, 1, kernel_size=1)
        self.channel_add_conv_s = nn.Sequential(
            nn.Conv2d(teacher_channels, teacher_channels//2, kernel_size=1),
            nn.LayerNorm([teacher_channels//2, 1, 1]),
            nn.ReLU(inplace=True),  # yapf: disable
            nn.Conv2d(teacher_channels//2, teacher_channels, kernel_size=1))
        self.channel_add_conv_t = nn.Sequential(
            nn.Conv2d(teacher_channels, teacher_channels//2, kernel_size=1),
            nn.LayerNorm([teacher_channels//2, 1, 1]),
            nn.ReLU(inplace=True),  # yapf: disable
            nn.Conv2d(teacher_channels//2, teacher_channels, kernel_size=1))

        self.reset_parameters()

    def forward(self,
                preds_S,
                preds_T,
                gt_bboxes,
                img_metas):
        """Forward function.
        Args:
            preds_S(Tensor): Bs*C*H*W, student's feature map
            preds_T(Tensor): Bs*C*H*W, teacher's feature map
            gt_bboxes(tuple): Bs*[nt*4], pixel decimal: (tl_x, tl_y, br_x, br_y)
            img_metas (list[dict]): Meta information of each image, e.g.,
            image size, scaling factor, etc.
        """
        assert preds_S.shape[-2:] == preds_T.shape[-2:], 'the output dim of teacher and student differ'
        device = gt_bboxes.device
        self.to(device)
        if self.align is not None:
            preds_S = self.align(preds_S)

        N,C,H,W = preds_S.shape

        S_attention_t, C_attention_t = self.get_attention(preds_T, self.temp)
        S_attention_s, C_attention_s = self.get_attention(preds_S, self.temp)
        
        Mask_fg = torch.zeros_like(S_attention_t)
        # Mask_bg = torch.ones_like(S_attention_t)
        wmin,wmax,hmin,hmax = [],[],[],[]
        img_h, img_w = img_metas
        bboxes = gt_bboxes[:,2:6]
        #xywh2xyxy
        bboxes = xywh2xyxy(bboxes)
        new_boxxes = torch.ones_like(bboxes)
        new_boxxes[:, 0] = torch.floor(bboxes[:, 0]*W)
        new_boxxes[:, 2] = torch.ceil(bboxes[:, 2]*W)
        new_boxxes[:, 1] = torch.floor(bboxes[:, 1]*H)
        new_boxxes[:, 3] = torch.ceil(bboxes[:, 3]*H)

        #to int
        new_boxxes = new_boxxes.int()

        for i in range(N):
            new_boxxes_i = new_boxxes[torch.where(gt_bboxes[:,0]==i)]

            wmin.append(new_boxxes_i[:, 0])
            wmax.append(new_boxxes_i[:, 2])
            hmin.append(new_boxxes_i[:, 1])
            hmax.append(new_boxxes_i[:, 3])

            area = 1.0/(hmax[i].view(1,-1)+1-hmin[i].view(1,-1))/(wmax[i].view(1,-1)+1-wmin[i].view(1,-1))

            for j in range(len(new_boxxes_i)):
                Mask_fg[i][hmin[i][j]:hmax[i][j]+1, wmin[i][j]:wmax[i][j]+1] = \
                        torch.maximum(Mask_fg[i][hmin[i][j]:hmax[i][j]+1, wmin[i][j]:wmax[i][j]+1], area[0][j])

        Mask_bg = torch.where(Mask_fg > 0, 0., 1.)
        Mask_bg_sum = torch.sum(Mask_bg, dim=(1,2))
        Mask_bg[Mask_bg_sum>0] /= Mask_bg_sum[Mask_bg_sum>0].unsqueeze(1).unsqueeze(2)

        fg_loss, bg_loss = self.get_fea_loss(preds_S, preds_T, Mask_fg, Mask_bg, 
                        C_attention_s, C_attention_t, S_attention_s, S_attention_t)
        mask_loss = self.get_mask_loss(C_attention_s, C_attention_t, S_attention_s, S_attention_t)
        rela_loss = self.get_rela_loss(preds_S, preds_T)

        loss = self.alpha_fgd * fg_loss + self.beta_fgd * bg_loss \
            + self.gamma_fgd * mask_loss + self.lambda_fgd * rela_loss
            
        return loss, loss.detach()

    def get_attention(self, preds, temp):
        """ preds: Bs*C*W*H """
        N, C, H, W= preds.shape

        value = torch.abs(preds)
        # Bs*W*H
        fea_map = value.mean(axis=1, keepdim=True)
        S_attention = (H * W * F.softmax((fea_map/temp).view(N,-1), dim=1)).view(N, H, W)

        # Bs*C
        channel_map = value.mean(axis=2,keepdim=False).mean(axis=2,keepdim=False)
        C_attention = C * F.softmax(channel_map/temp, dim=1)

        return S_attention, C_attention


    def get_fea_loss(self, preds_S, preds_T, Mask_fg, Mask_bg, C_s, C_t, S_s, S_t):
        loss_mse = nn.MSELoss(reduction='sum')
        
        Mask_fg = Mask_fg.unsqueeze(dim=1)
        Mask_bg = Mask_bg.unsqueeze(dim=1)

        C_t = C_t.unsqueeze(dim=-1)
        C_t = C_t.unsqueeze(dim=-1)

        S_t = S_t.unsqueeze(dim=1)

        fea_t= torch.mul(preds_T, torch.sqrt(S_t))
        fea_t = torch.mul(fea_t, torch.sqrt(C_t))
        fg_fea_t = torch.mul(fea_t, torch.sqrt(Mask_fg))
        bg_fea_t = torch.mul(fea_t, torch.sqrt(Mask_bg))

        fea_s = torch.mul(preds_S, torch.sqrt(S_t))
        fea_s = torch.mul(fea_s, torch.sqrt(C_t))
        fg_fea_s = torch.mul(fea_s, torch.sqrt(Mask_fg))
        bg_fea_s = torch.mul(fea_s, torch.sqrt(Mask_bg))

        fg_loss = loss_mse(fg_fea_s, fg_fea_t)/len(Mask_fg)
        bg_loss = loss_mse(bg_fea_s, bg_fea_t)/len(Mask_bg)

        return fg_loss, bg_loss


    def get_mask_loss(self, C_s, C_t, S_s, S_t):

        mask_loss = torch.sum(torch.abs((C_s-C_t)))/len(C_s) + torch.sum(torch.abs((S_s-S_t)))/len(S_s)

        return mask_loss
     
    
    def spatial_pool(self, x, in_type):
        batch, channel, width, height = x.size()
        input_x = x
        # [N, C, H * W]
        input_x = input_x.view(batch, channel, height * width)
        # [N, 1, C, H * W]
        input_x = input_x.unsqueeze(1)
        # [N, 1, H, W]
        if in_type == 0:
            context_mask = self.conv_mask_s(x)
        else:
            context_mask = self.conv_mask_t(x)
        # [N, 1, H * W]
        context_mask = context_mask.view(batch, 1, height * width)
        # [N, 1, H * W]
        context_mask = F.softmax(context_mask, dim=2)
        # [N, 1, H * W, 1]
        context_mask = context_mask.unsqueeze(-1)
        # [N, 1, C, 1]
        context = torch.matmul(input_x, context_mask)
        # [N, C, 1, 1]
        context = context.view(batch, channel, 1, 1)

        return context


    def get_rela_loss(self, preds_S, preds_T):
        loss_mse = nn.MSELoss(reduction='sum')

        context_s = self.spatial_pool(preds_S, 0)
        context_t = self.spatial_pool(preds_T, 1)

        out_s = preds_S
        out_t = preds_T

        channel_add_s = self.channel_add_conv_s(context_s)
        out_s = out_s + channel_add_s

        channel_add_t = self.channel_add_conv_t(context_t)
        out_t = out_t + channel_add_t

        rela_loss = loss_mse(out_s, out_t)/len(out_s)
        
        return rela_loss


    def last_zero_init(self, m):
        if isinstance(m, nn.Sequential):
            constant_init(m[-1], val=0)
        else:
            constant_init(m, val=0)

    
    def reset_parameters(self):
        kaiming_init(self.conv_mask_s, mode='fan_in')
        kaiming_init(self.conv_mask_t, mode='fan_in')
        self.conv_mask_s.inited = True
        self.conv_mask_t.inited = True

        self.last_zero_init(self.channel_add_conv_s)
        self.last_zero_init(self.channel_add_conv_t)

实例化FeatureLoss

在train.py中,实例化我们定义的FeatureLoss,由于我们要蒸馏三层,所以需要定一个蒸馏损失的数组:

if opt.teacher_weights:
        student_kd_layers = hyp["student_kd_layers"]
        teacher_kd_layers = hyp["teacher_kd_layers"]
        dump_image = torch.zeros((1, 3, imgsz, imgsz), device=device)
        targets = torch.Tensor([[0, 0, 0, 0, 0, 0]]).to(device)
        _, features = model(dump_image, extra_features = student_kd_layers)  # forward
        _, teacher_features = teacher_model(dump_image,
                                               extra_features=teacher_kd_layers)
        kd_losses = []
        for i in range(len(features)):
            feature = features[i]
            teacher_feature = teacher_features[i]
            _, student_channels, _ , _ = feature.shape
            _, teacher_channels, _ , _ = teacher_feature.shape

            kd_losses.append(FeatureLoss(student_channels,teacher_channels))

其中hyp[‘xxx_kd_layers’]是用于指定我们要蒸馏的层序号。
为了提取出我们需要的层的特征图,我们还需要对模型推理的代码进行修改,这个放在下一篇,这一篇先把主要流程过一遍。

蒸馏训练

与普通loss一样,在训练中,首先计算蒸馏loss, 然后进行反向传播,区别只是计算蒸馏loss时需要使用teacher模型也对数据进行推理。

if opt.teacher_weights:
	pred, features = model(imgs, extra_features = student_kd_layers)  # forward
	_, teacher_features = teacher_model(imgs, extra_features = teacher_kd_layers)
	if "loss_ota" not in hyp or hyp["loss_ota"] == 1 and epoch >= ota_start:
		loss, loss_items = compute_loss_ota(
			pred, targets.to(device), imgs
		)
	else:
		loss, loss_items = compute_loss(
			pred, targets.to(device)
		)  # loss scaled by batch_size
	# kd loss
	loss_items = torch.cat((loss_items[0].unsqueeze(0), loss_items[1].unsqueeze(0), loss_items[2].unsqueeze(0), torch.zeros(1, device=device), loss_items[3].unsqueeze(0)))
	loss_items[-1]*=imgs.shape[0]
	for i in range(len(features)):
		feature = features[i]
		teacher_feature = teacher_features[i]

		kd_loss, kd_loss_item = kd_losses[i](feature, teacher_feature, targets.to(device), [imgsz,imgsz])
		loss += kd_loss
		loss_items[3] += kd_loss_item
		loss_items[4] += kd_loss_item

在这里,我们将kd_loss累加到了loss上。计算出总的loss,其他就与普通训练一样了。

结语

这篇文章简述了一下yolov7的蒸馏过程,更多细节将在下一篇中讲述。
f77d79a3b79d6d9849231e64c8e1cdfa~tplv-dy-resize-origshort-autoq-75_330.jpeg

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/liuhao3285/article/details/133895411

智能推荐

什么是内部类?成员内部类、静态内部类、局部内部类和匿名内部类的区别及作用?_成员内部类和局部内部类的区别-程序员宅基地

文章浏览阅读3.4k次,点赞8次,收藏42次。一、什么是内部类?or 内部类的概念内部类是定义在另一个类中的类;下面类TestB是类TestA的内部类。即内部类对象引用了实例化该内部对象的外围类对象。public class TestA{ class TestB {}}二、 为什么需要内部类?or 内部类有什么作用?1、 内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据。2、内部类可以对同一个包中的其他类隐藏起来。3、 当想要定义一个回调函数且不想编写大量代码时,使用匿名内部类比较便捷。三、 内部类的分类成员内部_成员内部类和局部内部类的区别

分布式系统_分布式系统运维工具-程序员宅基地

文章浏览阅读118次。分布式系统要求拆分分布式思想的实质搭配要求分布式系统要求按照某些特定的规则将项目进行拆分。如果将一个项目的所有模板功能都写到一起,当某个模块出现问题时将直接导致整个服务器出现问题。拆分按照业务拆分为不同的服务器,有效的降低系统架构的耦合性在业务拆分的基础上可按照代码层级进行拆分(view、controller、service、pojo)分布式思想的实质分布式思想的实质是为了系统的..._分布式系统运维工具

用Exce分析l数据极简入门_exce l趋势分析数据量-程序员宅基地

文章浏览阅读174次。1.数据源准备2.数据处理step1:数据表处理应用函数:①VLOOKUP函数; ② CONCATENATE函数终表:step2:数据透视表统计分析(1) 透视表汇总不同渠道用户数, 金额(2)透视表汇总不同日期购买用户数,金额(3)透视表汇总不同用户购买订单数,金额step3:讲第二步结果可视化, 比如, 柱形图(1)不同渠道用户数, 金额(2)不同日期..._exce l趋势分析数据量

宁盾堡垒机双因素认证方案_horizon宁盾双因素配置-程序员宅基地

文章浏览阅读3.3k次。堡垒机可以为企业实现服务器、网络设备、数据库、安全设备等的集中管控和安全可靠运行,帮助IT运维人员提高工作效率。通俗来说,就是用来控制哪些人可以登录哪些资产(事先防范和事中控制),以及录像记录登录资产后做了什么事情(事后溯源)。由于堡垒机内部保存着企业所有的设备资产和权限关系,是企业内部信息安全的重要一环。但目前出现的以下问题产生了很大安全隐患:密码设置过于简单,容易被暴力破解;为方便记忆,设置统一的密码,一旦单点被破,极易引发全面危机。在单一的静态密码验证机制下,登录密码是堡垒机安全的唯一_horizon宁盾双因素配置

谷歌浏览器安装(Win、Linux、离线安装)_chrome linux debian离线安装依赖-程序员宅基地

文章浏览阅读7.7k次,点赞4次,收藏16次。Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:..._chrome linux debian离线安装依赖

烤仔TVの尚书房 | 逃离北上广?不如押宝越南“北上广”-程序员宅基地

文章浏览阅读153次。中国发达城市榜单每天都在刷新,但无非是北上广轮流坐庄。北京拥有最顶尖的文化资源,上海是“摩登”的国际化大都市,广州是活力四射的千年商都。GDP和发展潜力是衡量城市的数字指...

随便推点

java spark的使用和配置_使用java调用spark注册进去的程序-程序员宅基地

文章浏览阅读3.3k次。前言spark在java使用比较少,多是scala的用法,我这里介绍一下我在项目中使用的代码配置详细算法的使用请点击我主页列表查看版本jar版本说明spark3.0.1scala2.12这个版本注意和spark版本对应,只是为了引jar包springboot版本2.3.2.RELEASEmaven<!-- spark --> <dependency> <gro_使用java调用spark注册进去的程序

汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用_uds协议栈 源代码-程序员宅基地

文章浏览阅读4.8k次。汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用,代码精简高效,大厂出品有量产保证。:139800617636213023darcy169_uds协议栈 源代码

AUTOSAR基础篇之OS(下)_autosar 定义了 5 种多核支持类型-程序员宅基地

文章浏览阅读4.6k次,点赞20次,收藏148次。AUTOSAR基础篇之OS(下)前言首先,请问大家几个小小的问题,你清楚:你知道多核OS在什么场景下使用吗?多核系统OS又是如何协同启动或者关闭的呢?AUTOSAR OS存在哪些功能安全等方面的要求呢?多核OS之间的启动关闭与单核相比又存在哪些异同呢?。。。。。。今天,我们来一起探索并回答这些问题。为了便于大家理解,以下是本文的主题大纲:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JCXrdI0k-1636287756923)(https://gite_autosar 定义了 5 种多核支持类型

VS报错无法打开自己写的头文件_vs2013打不开自己定义的头文件-程序员宅基地

文章浏览阅读2.2k次,点赞6次,收藏14次。原因:自己写的头文件没有被加入到方案的包含目录中去,无法被检索到,也就无法打开。将自己写的头文件都放入header files。然后在VS界面上,右键方案名,点击属性。将自己头文件夹的目录添加进去。_vs2013打不开自己定义的头文件

【Redis】Redis基础命令集详解_redis命令-程序员宅基地

文章浏览阅读3.3w次,点赞80次,收藏342次。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。当数据量很大时,count 的数量的指定可能会不起作用,Redis 会自动调整每次的遍历数目。_redis命令

URP渲染管线简介-程序员宅基地

文章浏览阅读449次,点赞3次,收藏3次。URP的设计目标是在保持高性能的同时,提供更多的渲染功能和自定义选项。与普通项目相比,会多出Presets文件夹,里面包含着一些设置,包括本色,声音,法线,贴图等设置。全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,主光源和附加光源在一次Pass中可以一起着色。URP:全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,一次Pass可以计算多个光源。可编程渲染管线:渲染策略是可以供程序员定制的,可以定制的有:光照计算和光源,深度测试,摄像机光照烘焙,后期处理策略等等。_urp渲染管线

推荐文章

热门文章

相关标签