Python基于逻辑回归的糖尿病视网膜病变检测(数据集messidor_features.arff)_messidor数据集-程序员宅基地

技术标签: python  1024程序员节  机器学习  python机器学习  逻辑回归  

一. 引言
本项目基于逻辑回归理论,运用Python语言对数据集messidor_features.arff进行分析,实现对糖尿病视网膜病变的检测。糖尿病视网膜病变(DR)是糖尿病最常见的微血管并发症之一,是慢性进行性糖尿病导致的视网膜微血管渗漏和阻塞从而引起一系列的眼底病变,如微血管瘤、硬性渗出、黄班水肿甚至视网膜脱离。DR检测对于糖尿病人群筛查、糖尿病患者早期治疗具有重要意义。

二. 数据集描述
1. 下载地址messidor_features.arff
2. 数据集开头有一些描述信息,训练是用不到的,我选择删掉,方便用pd.read_csv()函数读取。
红色部分删去
当然不删也是可以的,有专门的函数读取.arff文件

from scipy.io import arff
import pandas as pd
df = arff.loadarff('messidor_features.arff') #读取出来是一个元组
dataframe = pd.DataFrame(df[0])

3.数据集messidor_features.arff包含从 Messidor 图像集中提取的特征,用于预测图像是否包含糖尿病视网膜病变的迹象。所有特征都代表检测到的病变、解剖部位的描述特征或图像级描述符。该数据集有20条属性,类标签是最后一条,如图。
属性
4. 对数据集有大概了解后,来简单探索性分析一下它。首先查看data.info(),看看有没有缺失值及数据类型。

import pandas as pd

path='E:/Python_file/zuoye/messidor_features.arff'
Cnames = ['x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9',
      'x10', 'x11', 'x12', 'x13', 'x14', 'x15', 'x16', 'x17', 'x18', 'y']
#删掉与数据集无关的内容
data=pd.read_csv(path,header=None,names=Cnames)
print('数据集基础信息:')
print(data.info())

可以看到数据里没有缺失值。再统计一下,类标签为‘1’的数据有611条,占比为53.1%;标签为‘0’的数据有540条,占比为46.9%。说明正例数据与负例数据的数量分布是均衡的。
5. 这里推荐使用pandas-profiling库,可以一键生成对数据集的分析报告,非常好用。没有安装的话用pip install pandas_profiling 命令安装一下。

import pandas_profiling
report= pandas_profiling.ProfileReport(data)
report.to_file("output_file.html")

运行后生成一个可交互的.html文件,通常包含对数据的类型检测;计算唯一值、缺失值;分位数统计如最小最大值、四分位数、中位数等;描述统计如平均数、众数、峰度偏度等;变量间相关系数的热力图,等等。
我们来看看该数据集下各属性间用Spearman秩相关系数(ρ)描述的单调相关的度量热力图,ρ的值介于-1和+1之间,-1表示完全负单调相关,0表示没有单调相关,1表示完全正单调相关。
相关性
三. 方法介绍
逻辑回归的原理有很多博主写的很好,我就不班门弄斧了,主要说说代码。利用sklearn库提供的LogisticRegression()可以很方便的完成训练和预测。

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

X=data[data.columns[0:19]] #提取特征,不要标签
y=data['y']                #train_size=0.8,80%的训练集占比
x_train,x_test,y_train,y_test=train_test_split(X,y,train_size=0.8,random_state=90)

lr=LogisticRegression(max_iter=3000)
clm=lr.fit(x_train,y_train)
print('对测试集的预测结果:')
#输出预测结果、预测结果的结构类型及尺寸
result=clm.predict(x_test)

LogisticRegression()的参数很多,但需要设置的不多。我们的数据集是分布均衡的,参数类别权重class_weight不需要设置;关于参数优化算法solver用默认的‘liblinear’就好,因为这是二分类问题(只看有没有病变),而且我们是小数据集,也用不到面向大数据集的‘sag’和‘saga’;而max_iter是设置迭代次数,如果小了,可能模型没收敛就运行结束了,这里我设置为3000次。

四. 结果和模型评价及可视化
1.测试集的检测结果如图,1代表有病变,0代表没有。要注意的是划分训练集和测试集时,random_state等于不同的值,会得到不同的测试集,我这里是random_state=90,改成其他数,预测结果就和我不同,但对模型评价没有影响。
在这里插入图片描述
2. 模型评价的指标有很多,比如召回率、精度、准确率、F统计量、决定系数R²、ROC曲线的包络面积AUC等。可以用classification_report()一键生成评估报告。

from sklearn.metrics import classification_report
print('性能报告;')
print(classification_report(y_test,result))
confusion = metrics.confusion_matrix(y_test, result)

在这里插入图片描述
3. 以FPR为横轴,TPR为纵轴,绘制ROC曲线,并由曲线计算得AUC=0.77。

from sklearn.metrics import roc_curve,auc
from matplotlib import pyplot as plt

fpr, tpr, thr = roc_curve(y_test, result, drop_intermediate=False)
fpr, tpr = [0] + list(fpr), [0] + list(tpr)
plt.plot(fpr, tpr)
plt.title('ROC curve for diabetes classifier')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.grid(True)
plt.show()
print('AUC:'+ str(auc(fpr,tpr)))

在这里插入图片描述
该模型的检测能力还是可以的。
4. 从逻辑回归模型中导出各个变量的回归系数,由此作出重要程度的条形图。

print('逻辑回归各变量系数:')
print(clm.coef_)
coef_lr = pd.DataFrame({
    'var' : x_test.columns,
                        'coef' : clm.coef_.flatten()
                        })

index_sort =  np.abs(coef_lr['coef']).sort_values().index
coef_lr_sort = coef_lr.loc[index_sort,:]

# 水平柱形图绘图
fig,ax=plt.subplots()
x, y = coef_lr_sort['var'], coef_lr_sort['coef']
rects = plt.barh(x, y, color='dodgerblue')
plt.grid(linestyle="-.", axis='y', alpha=0.4)
plt.tight_layout()
#添加数据标签
for rect in rects:
    w = rect.get_width()
    ax.text(w, rect.get_y()+rect.get_height()/2,'%.2f' %w,ha='left',va='center')

在这里插入图片描述
逻辑回归就是把线性回归的结果输入到了sigmoid函数,所以各变量的系数还是有的。
在这里插入图片描述
可以看到对视网膜病变检测结果影响最大的五个变量分别是x14,x1,x2,x0,x15,它们的含义参照上文。可以确定这五个变量是导致糖尿病视网膜病变的主要因素。

五. 完整代码

import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.metrics import classification_report
from sklearn import metrics
from sklearn.metrics import roc_curve,auc
from matplotlib import pyplot as plt
import numpy as np


path='/content/drive/MyDrive/messidor_features.arff'
Cnames = ['x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9',
      'x10', 'x11', 'x12', 'x13', 'x14', 'x15', 'x16', 'x17', 'x18', 'y']
#首先删掉与数据集无关的内容
data=pd.read_csv(path,header=None,names=Cnames)
X=data[data.columns[0:19]] 
y=data['y']

x_train,x_test,y_train,y_test=train_test_split(X,y,train_size=0.8,random_state=90)

lr=LogisticRegression(max_iter=3000)
clm=lr.fit(x_train,y_train)
print('对测试集的预测结果:')
#输出预测结果、预测结果的结构类型及尺寸
result=clm.predict(x_test)
print(result,type(result),result.shape) 
print('模型评分:'+ str(clm.score(x_test,y_test))) #用决定系数来打分
print('性能报告;')
print(classification_report(y_test,result))
confusion = metrics.confusion_matrix(y_test, result)
print('混淆矩阵:')
print(confusion)
TP = confusion[1, 1]
TN = confusion[0, 0]
FP = confusion[0, 1]
FN = confusion[1, 0]

print('TPR(正确识别的正例数据在实际正例数据中的占比):'+str(TP/(TP + FN)))
print('TNR(正确识别的负例数据在实际负例数据中的占比):'+str(TN/(TN + FP)))
print('Accuracy score: ', format(accuracy_score(y_test, result)))
print('Precision score: ', format(precision_score(y_test, result)))
print('Recall score: ', format(recall_score(y_test, result)))
print('F1 score: ', format(f1_score(y_test, result)))

fpr, tpr, thr = roc_curve(y_test, result, drop_intermediate=False)
fpr, tpr = [0] + list(fpr), [0] + list(tpr)
plt.plot(fpr, tpr)
plt.title('ROC curve for diabetes classifier')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.grid(True)
plt.show()
print('AUC:'+ str(auc(fpr,tpr)))
print('逻辑回归各变量系数:')
print(clm.coef_)
coef_lr = pd.DataFrame({
    'var' : x_test.columns,
                        'coef' : clm.coef_.flatten()
                        })

index_sort =  np.abs(coef_lr['coef']).sort_values().index
coef_lr_sort = coef_lr.loc[index_sort,:]

# 水平柱形图绘图
fig,ax=plt.subplots()
x, y = coef_lr_sort['var'], coef_lr_sort['coef']
rects = plt.barh(x, y, color='dodgerblue')
plt.grid(linestyle="-.", axis='y', alpha=0.4)
plt.tight_layout()
#添加数据标签
for rect in rects:
    w = rect.get_width()
    ax.text(w, rect.get_y()+rect.get_height()/2,'%.2f' %w,ha='left',va='center')

如果有错,还望指正。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/kalakalabala/article/details/121469980

智能推荐

python服务器端开发面试_【网易游戏Python面试】python 服务端开发-看准网-程序员宅基地

文章浏览阅读145次。10.21终面已参加,希望能顺利通过终面拿到offer~一共三轮,电话面试+笔试+视频面试,视频面试3V110月19日投的新媒体运营的简历,HR说因为是周末,等工作日再联系我,在周一下午三点我接到了电话成功通过简历筛选和电话面试,整个电话面试的过程长,大概10分钟左右,因为前期稍微做了一些准备,所以还算对答如流,整个过程顺利,HR现场告诉我通过面试,并随即给我发了笔试题,让我准备一下,最晚三天之..._网易 python游戏服务器

MVC层次划分简述_mvc分层-程序员宅基地

文章浏览阅读6.5k次,点赞12次,收藏38次。MVC层次划分简述写在前面的一段话:首先要知道MVC和三层架构之间有什么关系:MVC:【 Model(数据模型) - View(视图) - Controller(控制器) 】三层架构:【 Presentation tier(展现层) - Application tier(应用层)+Date tier(数据访问层) 】很多人都有一个误解,认为Spring MVC的M、V、C对..._mvc分层

Flink的sink实战之三:cassandra3_flink cassandra-程序员宅基地

文章浏览阅读2.9k次。实践flink数据集sink到cassandra3_flink cassandra

使用docker安装codimd,搭建你自己的在线协作markdown编辑器_群晖 docker 搭建 codimd-程序员宅基地

文章浏览阅读7.1k次,点赞4次,收藏12次。文章目录一、前言二、codimd是什么?2.1 源于hackmd的超好用markdown编辑器2.2 codimd的作用三、安装和使用3.1 安装前需要知道的3.2 安装步骤3.2.1 创建数据库3.2.2 安装git3.2.3 安装docker3.2.4 安装docker compose3.2.5 安装codimd3.2.6 检查是否安装成功3.2.7 放行端口3.2.8 测试使用3.3 开始写..._群晖 docker 搭建 codimd

Json和ajax-程序员宅基地

文章浏览阅读335次。Json json 可以定义多种类型 var jsonObj = { "key1":123, "key2":"name", "key3":[12,"age",true], //数组 "key4":false, "key5":{ //存一个json对象 "key6":456, "key7":"number" }} json其实就是一个Object对象, 他的key值 可以看成对象的一个属性, 获取他的value值...

ssm超市账单管理系统a2e96【独家源码】 应对计算机毕业设计困难的解决方案-程序员宅基地

文章浏览阅读87次。选题背景:超市账单管理系统是一种针对超市行业的管理工具,旨在提供高效、准确、便捷的账单管理服务。随着城市化进程的加快和人们生活水平的提高,超市作为日常生活必需品的主要供应渠道之一,扮演着重要的角色。然而,传统的超市账单管理方式存在一些问题,如手工记录容易出错、数据整理繁琐、信息不透明等。因此,开发一个科技化的超市账单管理系统成为了必要之举。选题意义:首先,超市账单管理系统的开发可以提高账单管理的效率。传统的超市账单管理方式通常需要员工手动记录商品销售信息,并进行数据整理和汇总。这种方式容易出现人为错

随便推点

bookmarks_2021_9_28_拾度智能科技 att7022eu-程序员宅基地

文章浏览阅读1.7k次。书签栏通讯 s7-1200与s7-200smart通讯-工业支持中心-西门子中国IO_deviceS7-1200PROFINET通信ET 200SP 安装视频 - ID: 95886218 - Industry Support Siemens云平台接入在线文档 - 低代码开发嵌入式设备 | 物一世 WareExpress在linux下使用c语言实现MQTT通信(一.MQTT原理介绍及流程图)_qq_44041062的博客-程序员宅基地C mqtt_百度搜索开发快M_拾度智能科技 att7022eu

国家取消职称英语与计算机,全国职称英语考试取消-程序员宅基地

文章浏览阅读1.6k次。职称英语全称为全国专业技术人员职称英语等级考试,是由国家人事部组织实施的一项国家级外语考试。1.概述全国专业技术人员职称英语等级考试是由人力资源和社会保障部组织实施的一项外语考试,它根据英语在不同专业领域活动中的应用特点,结合专业技术人员掌握和应用英语的实际情况,对申报不同级别职称的专业技术人员的英语水平提出了不同的要求。该考试根据专业技术人员使用英语的实际情况,把考试的重点放在了阅读理解上面。全..._全国专业技术人员职称英语等级考试 北京 取消

where里能用max吗_网络里能找到真爱吗?-程序员宅基地

文章浏览阅读42次。恋爱指导篇 知心的小爱“真爱”是一个永不过时的话题,古代的人找对象,靠的是媒妁之言,父母定婚姻。现代的人靠的是相亲,自由恋爱,按理找一个喜欢的人结婚会很幸福,近几年反而离率更高了。古代人认识的人少,交流工具少,最多信鸽传书,信物传情。现代要认识一个人很容易了,最初是电话信息联系。前几年是qq,微信摇一摇,近两年是抖音,快手随便找一找。虽然找对象,寻伴侣更方便了,为何大部分人还是感觉更迷茫,不快乐...

刷题记录第八十天-修剪二叉搜索树-程序员宅基地

文章浏览阅读109次。【代码】刷题记录第八十天-修剪二叉搜索树。

dcm4che,WADO相关-程序员宅基地

文章浏览阅读248次。关于 dcm4che WADO WADO:Web Access to DICOM Objects dcm4che 是一个为医疗保健企业的开源应用程序和工具集合。这些应用程序已经开发了Java编程语言的性能和便携性,在JDK 1.6及更高版本支持部署。在dcm4che项目的核心是一个强大的执行DICOM标准的。该dcm4che-1.x和dcm4che-2.X DICOM Tool..._dcm4che实现wado服务

linux查看zk日志,14.1 zookeeper日志查看-程序员宅基地

文章浏览阅读2.2k次。zookeeper服务器会产生三类日志:事务日志、快照日志和log4j日志。在zookeeper默认配置文件zoo.cfg(可以修改文件名)中有一个配置项dataDir,该配置项用于配置zookeeper快照日志和事务日志的存储地址。在官方提供的默认参考配置文件zoo_sample.cfg中,只有dataDir配置项。其实在实际应用中,还可以为事务日志专门配置存储地址,配置项名称为dataLogD..._linux查看zookeeper日志

推荐文章

热门文章

相关标签