雪花算法(SnowFlake)_文丑颜不良啊的博客-程序员秘密_雪花算法

技术标签: Java  雪花算法  编程工具  

简介

现在的服务基本是分布式、微服务形式的,而且大数据量也导致分库分表的产生,对于水平分表就需要保证表中 id 的全局唯一性。

对于 MySQL 而言,一个表中的主键 id 一般使用自增的方式,但是如果进行水平分表之后,多个表中会生成重复的 id 值。那么如何保证水平分表后的多张表中的 id 是全局唯一性的呢?

如果还是借助数据库主键自增的形式,那么可以让不同表初始化一个不同的初始值,然后按指定的步长进行自增。例如有3张拆分表,初始主键值为1,2,3,自增步长为3。

当然也有人使用 UUID 来作为主键,但是 UUID 生成的是一个无序的字符串,对于 MySQL 推荐使用增长的数值类型值作为主键来说不适合。

也可以使用 Redis 的自增原子性来生成唯一 id,但是这种方式业内比较少用。

当然还有其他解决方案,不同互联网公司也有自己内部的实现方案。雪花算法是其中一个用于解决分布式 id 的高效方案,也是许多互联网公司在推荐使用的。

SnowFlake 雪花算法

SnowFlake 中文意思为雪花,故称为雪花算法。最早是 Twitter 公司在其内部用于分布式环境下生成唯一 ID。在2014年开源 scala 语言版本。

雪花算法的原理就是生成一个的 64 位比特位的 long 类型的唯一 id。

  • 最高 1 位固定值 0,因为生成的 id 是正整数,如果是 1 就是负数了。
  • 接下来 41 位存储毫秒级时间戳,2^41/(1000*60*60*24*365)=69,大概可以使用 69 年。
  • 再接下 10 位存储机器码,包括 5 位 datacenterId 和 5 位 workerId。最多可以部署 2^10=1024 台机器。
  • 最后 12 位存储序列号。同一毫秒时间戳时,通过这个递增的序列号来区分。即对于同一台机器而言,同一毫秒时间戳下,可以生成 2^12=4096 个不重复 id。

可以将雪花算法作为一个单独的服务进行部署,然后需要全局唯一 id 的系统,请求雪花算法服务获取 id 即可。

对于每一个雪花算法服务,需要先指定 10 位的机器码,这个根据自身业务进行设定即可。例如机房号+机器号,机器号+服务号,或者是其他可区别标识的 10 位比特位的整数值都行。

算法实现

package util;

import java.util.Date;

/**
 * @ClassName: SnowFlakeUtil
 * @Author: jiaoxian
 * @Date: 2022/4/24 16:34
 * @Description:
 */
public class SnowFlakeUtil {

    private static SnowFlakeUtil snowFlakeUtil;
    static {
        snowFlakeUtil = new SnowFlakeUtil();
    }

    // 初始时间戳(纪年),可用雪花算法服务上线时间戳的值
    // 1650789964886:2022-04-24 16:45:59
    private static final long INIT_EPOCH = 1650789964886L;

    // 时间位取&
    private static final long TIME_BIT = 0b1111111111111111111111111111111111111111110000000000000000000000L;

    // 记录最后使用的毫秒时间戳,主要用于判断是否同一毫秒,以及用于服务器时钟回拨判断
    private long lastTimeMillis = -1L;

    // dataCenterId占用的位数
    private static final long DATA_CENTER_ID_BITS = 5L;

    // dataCenterId占用5个比特位,最大值31
    // 0000000000000000000000000000000000000000000000000000000000011111
    private static final long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS);

    // dataCenterId
    private long dataCenterId;

    // workId占用的位数
    private static final long WORKER_ID_BITS = 5L;

    // workId占用5个比特位,最大值31
    // 0000000000000000000000000000000000000000000000000000000000011111
    private static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);

    // workId
    private long workerId;

    // 最后12位,代表每毫秒内可产生最大序列号,即 2^12 - 1 = 4095
    private static final long SEQUENCE_BITS = 12L;

    // 掩码(最低12位为1,高位都为0),主要用于与自增后的序列号进行位与,如果值为0,则代表自增后的序列号超过了4095
    // 0000000000000000000000000000000000000000000000000000111111111111
    private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);

    // 同一毫秒内的最新序号,最大值可为 2^12 - 1 = 4095
    private long sequence;

    // workId位需要左移的位数 12
    private static final long WORK_ID_SHIFT = SEQUENCE_BITS;

    // dataCenterId位需要左移的位数 12+5
    private static final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;

    // 时间戳需要左移的位数 12+5+5
    private static final long TIMESTAMP_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;

    /**
     * 无参构造
     */
    public SnowFlakeUtil() {
        this(1, 1);
    }

    /**
     * 有参构造
     * @param dataCenterId
     * @param workerId
     */
    public SnowFlakeUtil(long dataCenterId, long workerId) {
        // 检查dataCenterId的合法值
        if (dataCenterId < 0 || dataCenterId > MAX_DATA_CENTER_ID) {
            throw new IllegalArgumentException(
                    String.format("dataCenterId 值必须大于 0 并且小于 %d", MAX_DATA_CENTER_ID));
        }
        // 检查workId的合法值
        if (workerId < 0 || workerId > MAX_WORKER_ID) {
            throw new IllegalArgumentException(String.format("workId 值必须大于 0 并且小于 %d", MAX_WORKER_ID));
        }
        this.workerId = workerId;
        this.dataCenterId = dataCenterId;
    }

    /**
     * 获取唯一ID
     * @return
     */
    public static Long getSnowFlakeId() {
        return snowFlakeUtil.nextId();
    }

    /**
     * 通过雪花算法生成下一个id,注意这里使用synchronized同步
     * @return 唯一id
     */
    public synchronized long nextId() {
        long currentTimeMillis = System.currentTimeMillis();
        System.out.println(currentTimeMillis);
        // 当前时间小于上一次生成id使用的时间,可能出现服务器时钟回拨问题
        if (currentTimeMillis < lastTimeMillis) {
            throw new RuntimeException(
                    String.format("可能出现服务器时钟回拨问题,请检查服务器时间。当前服务器时间戳:%d,上一次使用时间戳:%d", currentTimeMillis,
                            lastTimeMillis));
        }
        if (currentTimeMillis == lastTimeMillis) {
            // 还是在同一毫秒内,则将序列号递增1,序列号最大值为4095
            // 序列号的最大值是4095,使用掩码(最低12位为1,高位都为0)进行位与运行后如果值为0,则自增后的序列号超过了4095
            // 那么就使用新的时间戳
            sequence = (sequence + 1) & SEQUENCE_MASK;
            if (sequence == 0) {
                currentTimeMillis = getNextMillis(lastTimeMillis);
            }
        } else { // 不在同一毫秒内,则序列号重新从0开始,序列号最大值为4095
            sequence = 0;
        }
        // 记录最后一次使用的毫秒时间戳
        lastTimeMillis = currentTimeMillis;
        // 核心算法,将不同部分的数值移动到指定的位置,然后进行或运行
        // <<:左移运算符, 1 << 2 即将二进制的 1 扩大 2^2 倍
        // |:位或运算符, 是把某两个数中, 只要其中一个的某一位为1, 则结果的该位就为1
        // 优先级:<< > |
        return
                // 时间戳部分
                ((currentTimeMillis - INIT_EPOCH) << TIMESTAMP_SHIFT)
                // 数据中心部分
                | (dataCenterId << DATA_CENTER_ID_SHIFT)
                // 机器表示部分
                | (workerId << WORK_ID_SHIFT)
                // 序列号部分
                | sequence;
    }

    /**
     * 获取指定时间戳的接下来的时间戳,也可以说是下一毫秒
     * @param lastTimeMillis 指定毫秒时间戳
     * @return 时间戳
     */
    private long getNextMillis(long lastTimeMillis) {
        long currentTimeMillis = System.currentTimeMillis();
        while (currentTimeMillis <= lastTimeMillis) {
            currentTimeMillis = System.currentTimeMillis();
        }
        return currentTimeMillis;
    }

    /**
     * 获取随机字符串,length=13
     * @return
     */
    public static String getRandomStr() {
        return Long.toString(getSnowFlakeId(), Character.MAX_RADIX);
    }

    /**
     * 从ID中获取时间
     * @param id 由此类生成的ID
     * @return
     */
    public static Date getTimeBySnowFlakeId(long id) {
        return new Date(((TIME_BIT & id) >> 22) + INIT_EPOCH);
    }

    public static void main(String[] args) {
        SnowFlakeUtil snowFlakeUtil = new SnowFlakeUtil();
        long id = snowFlakeUtil.nextId();
        System.out.println(id);
        Date date = SnowFlakeUtil.getTimeBySnowFlakeId(id);
        System.out.println(date);
        long time = date.getTime();
        System.out.println(time);
        System.out.println(getRandomStr());

    }

}

算法优缺点

雪花算法有以下几个优点:

  • 高并发分布式环境下生成不重复 id,每秒可生成百万个不重复 id。
  • 基于时间戳,以及同一时间戳下序列号自增,基本保证 id 有序递增。
  • 不依赖第三方库或者中间件。
  • 算法简单,在内存中进行,效率高。

雪花算法有如下缺点:

  • 依赖服务器时间,服务器时钟回拨时可能会生成重复 id。算法中可通过记录最后一个生成 id 时的时间戳来解决,每次生成 id 之前比较当前服务器时钟是否被回拨,避免生成重复 id。

注意事项

其实雪花算法每一部分占用的比特位数量并不是固定死的。例如你的业务可能达不到 69 年之久,那么可用减少时间戳占用的位数,雪花算法服务需要部署的节点超过1024 台,那么可将减少的位数补充给机器码用。

注意,雪花算法中 41 位比特位不是直接用来存储当前服务器毫秒时间戳的,而是需要当前服务器时间戳减去某一个初始时间戳值,一般可以使用服务上线时间作为初始时间戳值。

对于机器码,可根据自身情况做调整,例如机房号,服务器号,业务号,机器 IP 等都是可使用的。对于部署的不同雪花算法服务中,最后计算出来的机器码能区分开来即可。

本文参考自:SnowFlake 雪花算法详解与实现 - 掘

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/jiaomubai/article/details/124385324

智能推荐

压力测试你应该知道的几个道理_你对压力测试了解吗_正在缓存99的博客-程序员秘密

转自:https://www.iteye.com/blog/sunjia-704471770-qq-com-2282141压力测试你应该知道的几个道理博客分类: java linuxjavaloadrunner压力测试jvm调优1.从压力测试说起压力测试的理解,xxx的性能10w/s,对你有意义么? 没有那家卖瓜的会说自己家的不甜,同样,没有哪个开源项目愿...

java获取上级目录_Java如何获取文件的父目录或上级目录?_Ubp.a的博客-程序员秘密

在Java程序中,如何获取文件的父目录或上级目录?以下示例显示如何使用File类的file.getParent()方法获取文件的父目录。package com.yiibai; import java.io.File; public class ParentDirectory { public static void main(String[] args) { ...

DMA/TIM capture_weixin_34096182的博客-程序员秘密

This is a more free standing example measuring the LSI (TIM5_CH4 internally)and demonstrating DMA/TIM capture with granularity of APB1 * 2// STM32F4-Discovery LSI Bench using DMA/TIM - sourcer32...

阿里出品!最吊的JAVA架构开发手册,给后端程序员们的福利_「已注销」的博客-程序员秘密

前段时间,在阿里的朋友分享给我一份内部学习资料——【JAVA架构开发手册】,我看完之后只感觉“吊”【JAVA架构开发手册】大致分为:基础、框架、分布式架构、微服务、调优5部分基础JAVA基础JAVA集合JAVA多线程并发网络数据结构与算法因为手册内容太多,下面就只以截图展示了。需要获取完整JAVA架构开发手册的小伙伴:关注我+转发文章后,私信我【手册】即可框架SpringSpringMVC...

黑马程序员——C控制语句(一)_jiongjiong_1的博客-程序员秘密

------Java培训、Android培训、iOS培训、.Net培训、期待与您交流! -------

随便推点

4.从零开始学SpringBoot-JPA_JDBC_Hibernate_Mybatis概念原理篇_CTO技术的博客-程序员秘密

前言我们知道,springboot操作mysql方式众多,Spring为各种支持的持久化技术,都提供了简单操作的模板和回调,目前大概有如下几种ORM持久化技术模板类JDBCorg.springframework.jdbc.core.JdbcTemplateHibernateorg.springframework.orm.hibernate.HibernateTem...

table如何设置边框_table 边框_glgom的博客-程序员秘密

1.通过table标签的属性来设置,border="1"边框设置为1,cellspacing="0"单元格间距设置为0.2.通过css样式设置,而且用css可以自动设置边框的粗细、颜色等。

java实体类 id赋值_java-实体类 uuid 注解配置 及使用uuid生成id的方法_平仄仄的博客-程序员秘密

标签:1   //发现资产主键2 @Id3 @GeneratedValue(generator="system-uuid")4 @GenericGenerator(name="system-uuid",strategy="uuid")5 private Long id;GUID是一个128位长的数字,一般用16进制表示。算法的核心思想是结合机器的网卡、当地时间、一个随即数来...

android 监听wifi广播的两种方式,Android 监听wifi广播的两种方式_weixin_39943370的博客-程序员秘密

1.XML中声明2.代码中注册IntentFilter filter = new IntentFilter();filter.addAction(WifiManager.NETWORK_STATE_CHANGED_ACTION);filter.addAction(WifiManager.WIFI_STATE_CHANGED_ACTION);filter.addAction(Connectivity...

Go语言并发编程总结_UsherYue的博客-程序员秘密

Golang :不要通过共享内存来通信,而应该通过通信来共享内存。这句风靡在Go社区的话,说的就是 goroutine中的 channel .......他在go并发编程中充当着 类型安全的管道作用。