目录
5. width_shift_range & height_shift_range
9. horizontal_flip & vertical_flip
from keras.preprocessing.image import ImageDataGenerator
keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization = False, samplewise_std_normalization = False, zca_whitening = False, rotation_range = 0., width_shift_range = 0., height_shift_range = 0., shear_range = 0., zoom_range = 0., channel_shift_range = 0., fill_mode = 'nearest', cval = 0.0, horizontal_flip = False, vertical_flip = False, rescale = None, preprocessing_function = None, data_format = K.image_data_format(), )
例子:
train_datagen = ImageDataGenerator(
preprocessing_function = preprocess_input,
rotation_range = 30,
width_shift_range = 0.2,
height_shift_range = 0.2,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True,
)
Data Aumentation(数据扩充)指的是在使用以下或者其他方法增加数据输入量。这里,我们特指图像数据。
旋转 | 反射变换(Rotation/reflection): 随机旋转图像一定角度; 改变图像内容的朝向;
翻转变换(flip): 沿着水平或者垂直方向翻转图像;
缩放变换(zoom): 按照一定的比例放大或者缩小图像;
平移变换(shift): 在图像平面上对图像以一定方式进行平移;
可以采用随机或人为定义的方式指定平移范围和平移步长, 沿水平或竖直方向进行平移. 改变图像内容的位置;
尺度变换(scale): 对图像按照指定的尺度因子, 进行放大或缩小; 或者参照SIFT特征提取思想, 利用指定的尺度因子对图像滤波构造尺度空间. 改变图像内容的大小或模糊程度;
对比度变换(contrast): 在图像的HSV颜色空间,改变饱和度S和V亮度分量,保持色调H不变. 对每个像素的S和V分量进行指数运算(指数因子在0.25到4之间), 增加光照变化;
噪声扰动(noise): 对图像的每个像素RGB进行随机扰动, 常用的噪声模式是椒盐噪声和高斯噪声;
图像深度学习任务中,面对小数据集,我们往往需要利用Image Data Augmentation图像增广技术来扩充我们的数据集,而keras的内置ImageDataGenerator很好地帮我们实现图像增广。但是面对ImageDataGenerator中众多的参数,每个参数所得到的效果分别是怎样的呢?本文针对Keras中ImageDataGenerator的各项参数数值的效果进行了详细解释,为各位深度学习研究者们提供一个参考。
我们先来看看ImageDataGenerator的官方说明(https://keras.io/preprocessing/image/)
keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
zca_epsilon=1e-6,
rotation_range=0.,
width_shift_range=0.,
height_shift_range=0.,
shear_range=0.,
zoom_range=0.,
channel_shift_range=0.,
fill_mode='nearest',
cval=0.,
horizontal_flip=False,
vertical_flip=False,
rescale=None,
preprocessing_function=None,
data_format=K.image_data_format())
官方提供的参数解释因为太长就不贴出来了,大家可以直接点开上面的链接看英文原介绍,我们现在就从每一个参数开始看看它会带来何种效果。
我们测试选用的是kaggle dogs vs cats redux 猫狗大战的数据集,随机选取了9张狗狗的照片,这9张均被resize成224×224的尺寸,如图1:
图1
datagen = image.ImageDataGenerator(featurewise_center=True,featurewise_std_normalization=True)
featurewise_center的官方解释:"Set input mean to 0 over the dataset, feature-wise." 大意为使数据集去中心化(使得其均值为0),而samplewise_std_normalization的官方解释是“ Divide inputs by std of the dataset, feature-wise.”,大意为将输入的每个样本除以其自身的标准差。这两个参数都是从数据集整体上对每张图片进行标准化处理,我们看看效果如何:
图2
与图1原图相比,经过处理后的图片在视觉上稍微“变暗”了一点。
datagen = image.ImageDataGenerator(samplewise_center=True,
samplewise_std_normalization=True)
samplewise_center的官方解释为:“ Set each sample mean to 0.”,使输入数据的每个样本均值为0;samplewise_std_normalization的官方解释为:“Divide each input by its std.”,将输入的每个样本除以其自身的标准差。这个月featurewise的处理不同,featurewise是从整个数据集的分布去考虑的,而samplewise只是针对自身图片,效果如图3:
图3
看来针对自身数据分布的处理在猫狗大战数据集上没有什么意义,或许在mnist这类灰度图上有用?读者可以试试。
datagen = image.ImageDataGenerator(zca_whitening=True)
zca白化的作用是针对图片进行PCA降维操作,减少图片的冗余信息,保留最重要的特征,细节可参看:Whitening transformation--维基百科(https://en.wikipedia.org/wiki/Whitening_transformation),Whitening--斯坦福(http://ufldl.stanford.edu/wiki/index.php/Whitening)。
很抱歉的是,本人使用keras的官方演示代码(https://keras.io/preprocessing/image/),并没有复现出zca_whitening的效果,当我的图片resize成224×224时,代码报内存错误,应该是在计算SVD的过程中数值太大。后来resize成28×28,就没有内存错误了,但是代码运行了一晚上都不结束,因此使用猫狗大战图片无法复现效果,这里转发另外一个博客使用mnist复现出的结果,如下图4。针对mnist的其它DataAugmentation结果可以看这个博客:Image Augmentation for Deep Learning With Keras(https://machinelearningmastery.com/image-augmentation-deep-learning-keras/),有修改意见的朋友欢迎留言。
图4
datagen = image.ImageDataGenerator(rotation_range=30)
rotation range的作用是用户指定旋转角度范围,其参数只需指定一个整数即可,但并不是固定以这个角度进行旋转,而是在 [0, 指定角度] 范围内进行随机角度旋转。效果如图5:
图5
datagen = image.ImageDataGenerator(width_shift_range=0.5,height_shift_range=0.5)
width_shift_range & height_shift_range 分别是水平位置评议和上下位置平移,其参数可以是[0, 1]的浮点数,也可以大于1,其最大平移距离为图片长或宽的尺寸乘以参数,同样平移距离并不固定为最大平移距离,平移距离在 [0, 最大平移距离] 区间内。效果如图6:
图6
平移图片的时候一般会出现超出原图范围的区域,这部分区域会根据fill_mode的参数来补全,具体参数看下文。当参数设置过大时,会出现图7的情况,因此尽量不要设置太大的数值。
图7
datagen = image.ImageDataGenerator(shear_range=0.5)
shear_range就是错切变换,效果就是让所有点的x坐标(或者y坐标)保持不变,而对应的y坐标(或者x坐标)则按比例发生平移,且平移的大小和该点到x轴(或y轴)的垂直距离成正比。
如图8所示,一个黑色矩形图案变换为蓝色平行四边形图案。狗狗图片变换效果如图9所示。
图8
图9
datagen = image.ImageDataGenerator(zoom_range=0.5)
zoom_range参数可以让图片在长或宽的方向进行放大,可以理解为某方向的resize,因此这个参数可以是一个数或者是一个list。当给出一个数时,图片同时在长宽两个方向进行同等程度的放缩操作;当给出一个list时,则代表[width_zoom_range, height_zoom_range],即分别对长宽进行不同程度的放缩。而参数大于0小于1时,执行的是放大操作,当参数大于1时,执行的是缩小操作。
参数大于0小于1时,效果如图10:
图10
参数等于4时,效果如图11:
图11
datagen = image.ImageDataGenerator(channel_shift_range=10)
channel_shift_range可以理解成改变图片的颜色,通过对颜色通道的数值偏移,改变图片的整体的颜色,这意味着是“整张图”呈现某一种颜色,像是加了一块有色玻璃在图片前面一样,因此它并不能单独改变图片某一元素的颜色,如黑色小狗不能变成白色小狗。当数值为10时,效果如图12;当数值为100时,效果如图13,可见当数值越大时,颜色变深的效果越强。
图12
图13
datagen = image.ImageDataGenerator(horizontal_flip=True)
horizontal_flip的作用是随机对图片执行水平翻转操作,意味着不一定对所有图片都会执行水平翻转,每次生成均是随机选取图片进行翻转。效果如图14。
图14
datagen = image.ImageDataGenerator(vertical_flip=True)
vertical_flip是作用是对图片执行上下翻转操作,和horizontal_flip一样,每次生成均是随机选取图片进行翻转,效果如图15。
图15
当然了,在猫狗大战数据集当中不适合使用vertical_flip,因为一般没有倒过来的动物。
datagen = image.ImageDataGenerator(rescale= 1/255, width_shift_range=0.1)
rescale的作用是对图片的每个像素值均乘上这个放缩因子,这个操作在所有其它变换操作之前执行,在一些模型当中,直接输入原图的像素值可能会落入激活函数的“死亡区”,因此设置放缩因子为1/255,把像素值放缩到0和1之间有利于模型的收敛,避免神经元“死亡”。
图片经过rescale之后,保存到本地的图片用肉眼看是没有任何区别的,如果我们在内存中直接打印图片的数值,可以看到以下结果:
图16
可以从图16看到,图片像素值都被缩小到0和1之间,但如果打开保存在本地的图片,其数值依然不变,如图17。
图17
应该是在保存到本地的时候,keras把图像像素值恢复为原来的尺度了,在内存中查看则不会。
datagen = image.ImageDataGenerator(fill_mode='wrap', zoom_range=[4, 4])
fill_mode为填充模式,如前面提到,当对图片进行平移、放缩、错切等操作时,图片中会出现一些缺失的地方,那这些缺失的地方该用什么方式补全呢?就由fill_mode中的参数确定,包括:“constant”、“nearest”(默认)、“reflect”和“wrap”。这四种填充方式的效果对比如图18所示,从左到右,从上到下分别为:“reflect”、“wrap”、“nearest”、“constant”。
图18
当设置为“constant”时,还有一个可选参数,cval,代表使用某个固定数值的颜色来进行填充。图19为cval=100时的效果,可以与图18右下角的无cval参数的图对比。
图19
自己动手来测试?
这里给出一段小小的代码,作为进行这些参数调试时的代码,你也可以使用jupyter notebook来试验这些参数,把图片结果打印到你的网页上。
%matplotlib inline
import matplotlib.pyplot as plt
from PIL import Image
from keras.preprocessing import image
import glob
# 设置生成器参数
datagen = image.ImageDataGenerator(fill_mode='wrap', zoom_range=[4, 4])
gen_data = datagen.flow_from_directory(PATH,
batch_size=1,
shuffle=False,
save_to_dir=SAVE_PATH,
save_prefix='gen',
target_size=(224, 224))
# 生成9张图
for i in range(9):
gen_data.next()
# 找到本地生成图,把9张图打印到同一张figure上
name_list = glob.glob(gen_path+'16/*')
fig = plt.figure()
for i in range(9):
img = Image.open(name_list[i])
sub_img = fig.add_subplot(331 + i)
sub_img.imshow(img)
plt.show()
结语
面对小数据集时,使用DataAugmentation扩充你的数据集就变得非常重要,但在使用DataAugmentation之前,先要了解你的数据集需不需要这类图片,如猫狗大战数据集不需要上下翻转的图片,以及思考一下变换的程度是不是合理的,例如把目标水平偏移到图像外面就是不合理的。多试几次效果,再最终确定使用哪些参数。上面所有内容已经公布在我的github上面,附上了实验时的jupyter notebook文件,大家可以玩一玩,have fun!
https://zhuanlan.zhihu.com/p/30197320
这个的意思就是可以直接增加图片的方式进行数据增强。其主要用到的函数是:
ImageDataGenerator(featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
zca_epsilon=1e-06,
rotation_range=0,
width_shift_range=0.0,
height_shift_range=0.0,
brightness_range=None,
shear_range=0.0,
zoom_range=0.0,
channel_shift_range=0.0,
fill_mode='nearest',
cval=0.0,
horizontal_flip=False,
vertical_flip=False,
rescale=None,
preprocessing_function=None,
data_format=None,
validation_split=0.0,
dtype=None)
对于我而言,常用的方法如下:
1 2 3 4 5 6 7 8 9 |
|
其中,参数的意义为:
1、rotation_range:旋转范围
2、width_shift_range:水平平移范围
3、height_shift_range:垂直平移范围
4、shear_range:float, 透视变换的范围
5、zoom_range:缩放范围
6、horizontal_flip:水平反转
7、brightness_range:图像随机亮度增强,给定一个含两个float值的list,亮度值取自上下限值间
8、fill_mode:‘constant’,‘nearest’,‘reflect’或‘wrap’之一,当进行变换时超出边界的点将根据本参数给定的方法进行处理。
实际使用时可以利用如下函数生成图像:
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import os
datagen = ImageDataGenerator(
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.2,
zoom_range=0.1,
horizontal_flip=False,
brightness_range=[0.1, 2],
fill_mode='nearest')
trains = os.listdir("./train/")
for index,train in enumerate(trains):
img = load_img("./train/" + train)
x = img_to_array(img)
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size=1,
save_to_dir='./train_out', save_prefix=str(index), save_format='jpg'):
i += 1
if i > 20:
break
生成效果为:
ImageDataGenerator是一个非常nice的增强方式,不过如果不想生成太多的图片,然后想要直接在读图的时候处理,也是可以的。
我们用到PIL中的ImageEnhance库。
1、亮度增强ImageEnhance.Brightness(image)
2、色度增强ImageEnhance.Color(image)
3、对比度增强ImageEnhance.Contrast(image)
4、锐度增强ImageEnhance.Sharpness(image)
问题背景最近(2021.09)使用google登陆总是失败,以前也经常碰到登陆失败的问题,但往往是测试环境服务器挂掉导致,因此一开始也想当然的又把原因归结于此,结果iOS登陆没问题。问题被抛给我,于是进行分析。日志找到登陆模块,在登陆结果返回的地方打印出日志。无论是成功异常啥的一股脑全部打出来。最后发现只有异常部分的日志打印了。日志如下:Error com.google.android.gms.common.api.ApiException: 10: caused a SocialLoginPla_google 登录 missing feature{name=auth_api_credentials_begin_sign_in, version
为什么80%的码农都做不了架构师?>>> ...
文章目录[隐藏] WordPress文章标题美化WordPress文章标题美化 WordPress文章标题美化效果展示: 点击展开 查看更多WordPress文章标题美化WordPress文章标题美化WordPress文章标题美化WordPress文章标题美化WordPress文章标题美化实现代码: 点击展开 查看更多12345678910111213141516171819202122232..._wordpress标题美化
1、 Air如何判断android、ios 平台网络连接状态?Android,使用as3原生api:[javascript]view plaincopyif(NetworkInfo.isSupported)//只有android支持NetworkInfo.networkInfo.addEvent..._nativeapplication 睡眠
http://www.eefocus.com/toradex/blog/16-12/400185_2d3bc.htmlBy Toradex Giovanni Bauermeister1). 简介相比曾经,如今科技设备对处理性能和速度要求越来越高。为了应对这种技术需求,许多公司发明了不少方法来获得更好的处理性能。例如苹果公司,发明了 Open Computing Language (_嵌入式opencl
游戏引擎使用OpenGL渲染,OpenGL调用显卡驱动告诉GPU干活,GPU经过各种计算把最终的图像渲染出来。游戏引擎:用于制作游戏或其它实时交互交互图形程序的软件,大多数游戏引擎都包含了渲染、UI、动画、物理引擎、音效、脚本、网络等系统,常见的引擎有Cocos、Unreal Engine、Unity等。而OpenGL,在游戏引擎看来,是其渲染引擎使用的API的一种,类似的API还有DirectX、 Vulkan等。渲染引擎负责调用这些图形API实现渲染,游戏引擎实际上屏蔽了底层使用的是何种图形API。_opengl和游戏引擎的关系
http://www.ccks2019.cn/?page_id=62组队微信:ljt1761
移动应用开发实践-Task1-OkHttp的基础使用目标:获取下图的json对象1.配置OkHttp(这里用的3.8.1版本)implementation 'com.squareup.okhttp3:okhttp:3.8.1'2.做一个简单的获取页面<?xml version="1.0" encoding="utf-8"?><LinearLayout ="http://schemas.android.com/apk/res/android"
FF31K-AHZD1-H8ETZ-8WWEZ-WUUVACV7T2-6WY5Q-48EWP-ZXY7X-QGUWD _vmware 14pro
2761: [JLOI2011]不重复数字Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2885 Solved: 1064[Submit][Status][Discuss]Description给出N个数,要求把其中重复的去掉,只保留第一次出现的数。例如,给出的数为1 2 18 3 3 19 2 3 6 5 4,其中2
我们知道线性表结构一般分为三种:顺序线性表、单链表、双链表。下面将会使用 java语言实现顺序表。使用数组作为容器。 基于线性表的三种结构的操作都是一样的我们设计一个线性表接口。package comkiritor.linear_table;/** * 线性表接口 * @author Kiritor * */public interfac_线性表怎么依次前移
(参考:http://blog.csdn.net/sun20082567/article/details/8316625 http://blog.csdn.net/gillerr/article/details/8518495 等) (注:下面部分内容未验证,为推测的行为)(注:前提-使用VS,工程文字模式为unicode模式--对代码中的文字有影响)(注:字节序为little-end_writestring