Tensorflow 2.0正式版10月份正式推出了,我也第一时间转向了这个新的版本,花了一些时间研究之后,我的结论是2.0版本确实是挺简便易用的,不过也有个缺点是封装的太好了,你无法很好的理解里面实现的机制,例如我尝试了2.0推荐的Keras搭建模型和训练的方法后,发现并没有之前1.x版本用低阶API直接训练收敛的快,而且似乎也达不到1.x的训练精度。例如采用了Batch Normalization的Keras层,如果是直接用Keras的Fit方法来训练和验证,在官方文档中没有提到如何来区分训练和预测,实际的测试之中发现模型收敛的很慢,查了网上的一些帖子也提到类似的问题,解决方案是调用Keras.backend.set_learning_phase,不过我发现调用与否差别不大,可能是网上帖子是基于TF 2.0的测试版本,和正式版本的行为有所不同。之后我也改用了Custom Training Loop的方式做比较,发现比直接model fit的方式似乎收敛的要快和更稳定一些,不过好像还是达不到1.x的精度。虽然目前我还没很好的运用TF2.0,不过整体感觉TF 2.0的易用性还是大大增强的,还是值得继续深入研究下去。下面记录一下我用TF 2.0进行Imagenet的训练的过程。Imagenet的文件依然按照我之前博客提到的方式来生成训练集和验证集,这里不再重复。
模型定义
我采用的是MobileNet V2的模型,如以下代码:
import tensorflow as tf
l = tf.keras.layers
imageWidth = 224
imageHeight = 224
def _conv(inputs, filters, kernel_size, strides, padding, bias=False, normalize=True, activation='relu'):
output = inputs
padding_str = 'same'
if padding>0:
output = l.ZeroPadding2D(padding=padding)(output)
padding_str = 'valid'
output = l.Conv2D(filters, kernel_size, strides, padding_str, use_bias=bias, \
kernel_initializer='he_normal', \
kernel_regularizer=tf.keras.regularizers.l2(l=5e-4))(output)
if normalize:
output = l.BatchNormalization(axis=3)(output)
if activation=='relu':
output = l.ReLU()(output)
if activation=='relu6':
output = l.ReLU(max_value=6)(output)
if activation=='leaky_relu':
output = l.LeakyReLU(alpha=0.1)(output)
return output
def _dwconv(inputs, filters, kernel_size, strides, padding, bias=False, activation='relu'):
output = inputs
padding_str = 'same'
if padding>0:
output = l.ZeroPadding2D(padding=(padding, padding))(output)
padding_str = 'valid'
output = l.DepthwiseConv2D(kernel_size, strides, padding_str, use_bias=bias, \
depthwise_initializer='he_uniform', depthwise_regularizer=tf.keras.regularizers.l2(l=5e-4))(output)
output = l.BatchNormalization(axis=3)(output)
if activation=='relu':
output = l.ReLU()(output)
if activation=='relu6':
output = l.ReLU(max_value=6)(output)
if activation=='leaky_relu':
output = l.LeakyReLU(alpha=0.1)(output)
return output
def _bottleneck(inputs, in_filters, out_filters, kernel_size, strides, bias=False, activation='relu6', t=1):
output = inputs
output = _conv(output, in_filters*t, 1, 1, 0, False, activation)
padding = 0
if strides == 2:
padding = 1
output = _dwconv(output, in_filters*t, kernel_size, strides, padding, bias=False, activation=activation)
output = _conv(output, out_filters, 1, 1, 0, False, 'linear')
if strides==1 and inputs.get_shape().as_list()[3]==output.get_shape().as_list()[3]:
output = l.add([output, inputs])
return output
def mobilenet_model_v2():
# Input Layer
image = tf.keras.Input(shape=(imageHeight,imageWidth,3)) #224*224*3
net = _conv(image, 32, 3, 2, 1, False, 'relu6') #112*112*32
net = _bottleneck(net, 32, 16, 3, 1, False, 'relu6', 1) #112*112*16
net = _bottleneck(net, 16, 24, 3, 2, False, 'relu6', 6) #56*56*24
net = _bottleneck(net, 24, 24, 3, 1, False, 'relu6', 6) #56*56*24
net = _bottleneck(net, 24, 32, 3, 2, False, 'relu6', 6) #28*28*32
net = _bottleneck(net, 32, 32, 3, 1, False, 'relu6', 6) #28*28*32
net = _bottleneck(net, 32, 32, 3, 1, False, 'relu6', 6) #28*28*32
net = _bottleneck(net, 32, 64, 3, 2, False, 'relu6', 6) #14*14*64
net = _bottleneck(net, 64, 64, 3, 1, False, 'relu6', 6) #14*14*64
net = _bottleneck(net, 64, 64, 3, 1, False, 'relu6', 6) #14*14*64
net = _bottleneck(net, 64, 64, 3, 1, False, 'relu6', 6) #14*14*64
net = _bottleneck(net, 64, 96, 3, 1, False, 'relu6', 6) #14*14*96
net = _bottleneck(net, 96, 96, 3, 1, False, 'relu6', 6) #14*14*96
net = _bottleneck(net, 96, 96, 3, 1, False, 'relu6', 6) #14*14*96
net = _bottleneck(net, 96, 96, 3, 1, False, 'relu6', 6) #14*14*96
net = _bottleneck(net, 96, 160, 3, 2, False, 'relu6', 6) #7*7*160
net = _bottleneck(net, 160, 160, 3, 1, False, 'relu6', 6) #7*7*160
net = _bottleneck(net, 160, 160, 3, 1, False, 'relu6', 6) #7*7*160
net = _bottleneck(net, 160, 320, 3, 1, False, 'relu6', 6) #7*7*320
net = _conv(net, 1280, 3, 1, 0, False, 'relu6') #7*7*1280
net = l.AveragePooling2D(7)(net)
net = l.Flatten()(net)
logits = l.Dense(1000, kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=1/1000))(net)
model = tf.keras.Model(inputs=image, outputs=logits)
return model
构建训练集和验证集
imageDepth = 3
batch_size = 64
resize_min = 256
train_files_names = os.listdir('/AI/train_tf/')
train_files = ['/AI/train_tf/'+item for item in train_files_names]
valid_files_names = os.listdir('/AI/valid_tf/')
valid_files = ['/AI/valid_tf/'+item for item in valid_files_names]
# Parse TFRECORD and distort the image for train
def _parse_function(example_proto):
features = {"image": tf.io.FixedLenFeature([], tf.string, default_value=""),
"height": tf.io.FixedLenFeature([1], tf.int64, default_value=[0]),
"width": tf.io.FixedLenFeature([1], tf.int64, default_value=[0]),
"channels": tf.io.FixedLenFeature([1], tf.int64, default_value=[3]),
"colorspace": tf.io.FixedLenFeature([], tf.string, default_value=""),
"img_format": tf.io.FixedLenFeature([], tf.string, default_value=""),
"label": tf.io.FixedLenFeature([1], tf.int64, default_value=[0]),
"bbox_xmin": tf.io.VarLenFeature(tf.float32),
"bbox_xmax": tf.io.VarLenFeature(tf.float32),
"bbox_ymin": tf.io.VarLenFeature(tf.float32),
"bbox_ymax": tf.io.VarLenFeature(tf.float32),
"text": tf.io.FixedLenFeature([], tf.string, default_value=""),
"filename": tf.io.FixedLenFeature([], tf.string, default_value="")
}
parsed_features = tf.io.parse_single_example(example_proto, features)
image_decoded = tf.image.decode_jpeg(parsed_features["image"], channels=3)
# Random resize the image
shape = tf.shape(image_decoded)
height, width = shape[0], shape[1]
resized_height, resized_width = tf.cond(height<width,
lambda: (resize_min, tf.cast(tf.multiply(tf.cast(width, tf.float64),tf.divide(resize_min,height)), tf.int32)),
lambda: (tf.cast(tf.multiply(tf.cast(height, tf.float64),tf.divide(resize_min,width)), tf.int32), resize_min))
image_float = tf.image.convert_image_dtype(image_decoded, tf.float32)
resized = tf.image.resize(image_float, [resized_height, resized_width])
# Random crop from the resized image
cropped = tf.image.random_crop(resized, [imageHeight, imageWidth, 3])
# Flip to add a little more random distortion in.
flipped = tf.image.random_flip_left_right(cropped)
# Standardization the image
image_train = tf.image.per_image_standardization(flipped)
image_train = tf.transpose(image_train, perm=[2, 0, 1])
features = {'input_1': image_train}
return features, parsed_features["label"][0]
def train_input_fn():
dataset_train = tf.data.TFRecordDataset(train_files)
dataset_train = dataset_train.map(_parse_function, num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset_train = dataset_train.shuffle(10000)
dataset_train = dataset_train.repeat(10)
dataset_train = dataset_train.batch(batch_size)
dataset_train = dataset_train.prefetch(batch_size)
return dataset_train
def _parse_test_function(example_proto):
features = {"image": tf.io.FixedLenFeature([], tf.string, default_value=""),
"height": tf.io.FixedLenFeature([1], tf.int64, default_value=[0]),
"width": tf.io.FixedLenFeature([1], tf.int64, default_value=[0]),
"channels": tf.io.FixedLenFeature([1], tf.int64, default_value=[3]),
"colorspace": tf.io.FixedLenFeature([], tf.string, default_value=""),
"img_format": tf.io.FixedLenFeature([], tf.string, default_value=""),
"label": tf.io.FixedLenFeature([1], tf.int64, default_value=[0]),
"bbox_xmin": tf.io.VarLenFeature(tf.float32),
"bbox_xmax": tf.io.VarLenFeature(tf.float32),
"bbox_ymin": tf.io.VarLenFeature(tf.float32),
"bbox_ymax": tf.io.VarLenFeature(tf.float32),
"text": tf.io.FixedLenFeature([], tf.string, default_value=""),
"filename": tf.io.FixedLenFeature([], tf.string, default_value="")
}
parsed_features = tf.io.parse_single_example(example_proto, features)
image_decoded = tf.image.decode_jpeg(parsed_features["image"], channels=3)
shape = tf.shape(image_decoded)
height, width = shape[0], shape[1]
resized_height, resized_width = tf.cond(height<width,
lambda: (resize_min, tf.cast(tf.multiply(tf.cast(width, tf.float64),tf.divide(resize_min,height)), tf.int32)),
lambda: (tf.cast(tf.multiply(tf.cast(height, tf.float64),tf.divide(resize_min,width)), tf.int32), resize_min))
image_float = tf.image.convert_image_dtype(image_decoded, tf.float32)
image_resized = tf.image.resize(image_float, [resized_height, resized_width])
# calculate how many to be center crop
shape = tf.shape(image_resized)
height, width = shape[0], shape[1]
amount_to_be_cropped_h = (height - imageHeight)
crop_top = amount_to_be_cropped_h // 2
amount_to_be_cropped_w = (width - imageWidth)
crop_left = amount_to_be_cropped_w // 2
image_cropped = tf.slice(image_resized, [crop_top, crop_left, 0], [imageHeight, imageWidth, -1])
image_valid = tf.image.per_image_standardization(image_cropped)
image_valid = tf.transpose(image_valid, perm=[2, 0, 1])
features = {'input_1': image_valid}
return features, parsed_features["label"][0]
def val_input_fn():
dataset_valid = tf.data.TFRecordDataset(valid_files)
dataset_valid = dataset_valid.map(_parse_test_function, num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset_valid = dataset_valid.batch(batch_size)
dataset_valid = dataset_valid.prefetch(batch_size)
return dataset_valid
定义模型的回调函数
主要作用是根据训练的步数来调整优化器的学习率,以及在每个训练EPOCH完成后打印输出验证集的指标,如以下代码:
boundaries = [1000, 5000, 60000, 80000]
values = [0.001, 0.1, 0.01, 0.001, 0.0001]
learning_rate_fn = tf.keras.optimizers.schedules.PiecewiseConstantDecay(boundaries, values)
class LRCallback(tf.keras.callbacks.Callback):
def __init__(self, starttime):
super(LRCallback, self).__init__()
self.epoch_starttime = starttime
self.batch_starttime = starttime
def on_train_batch_end(self, batch, logs):
step = tf.keras.backend.get_value(self.model.optimizer.iterations)
if step%100==0:
elasp_time = time.time()-self.batch_starttime
self.batch_starttime = time.time()
lr = tf.keras.backend.get_value(self.model.optimizer.lr)
tf.keras.backend.set_value(self.model.optimizer.lr, learning_rate_fn(step))
print("Steps:{}, LR:{:6.4f}, Loss:{:4.2f}, Time:{:4.1f}s"\
.format(step, lr, logs['loss'], elasp_time))
def on_epoch_end(self, epoch, logs=None):
epoch_elasp_time = time.time()-self.epoch_starttime
print("Epoch:{}, Top-1 Accuracy:{:5.3f}, Top-5 Accuracy:{:5.3f}, Time:{:5.1f}s"\
.format(epoch, logs['val_top_1_accuracy'], logs['val_top_5_accuracy'], epoch_elasp_time))
def on_epoch_begin(self, epoch, logs=None):
tf.keras.backend.set_learning_phase(True)
self.epoch_starttime=time.time()
def on_test_begin(self, logs=None):
tf.keras.backend.set_learning_phase(False)
tensorboard_cbk = tf.keras.callbacks.TensorBoard(log_dir='mobilenet/logs')
checkpoint_cbk = tf.keras.callbacks.ModelCheckpoint(filepath='mobilenet/test_{epoch}.h5', verbose=1)
编译模型
对模型进行编译,定义LOSS函数,选择优化器,选择验证指标。
model = mobilenet_model_v2()
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.SGD(learning_rate=0.001, momentum=0.9),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy(name='top_1_accuracy'),
tf.keras.metrics.SparseTopKCategoricalAccuracy(k=5, name='top_5_accuracy')])
训练和验证模型
最后就是开始进行训练和验证了,注意里面的Callbacks填入我们之前定义的回调函数,可以很方便的帮我们调整学习率,打印验证结果,保存模型。之后如果需要加载模型,只需调用tf.keras.models.load_model即可,不需要再对模型进行编译。
train_data = train_input_fn()
val_data = val_input_fn()
_ = model.fit(train_data,
validation_data=val_data,
epochs=2,
verbose=0,
callbacks=[LRCallback(time.time()), tensorboard_cbk, checkpoint_cbk],
steps_per_epoch=5000)
自定义训练过程(Custom Training Loop)
从以上的代码可见,用Keras Model Compile和Fit的方式可以很方便的对模型进行训练,唯一美中不足的是,我发现这个过程封装的太黑盒子了,里面的一些细节都别掩盖掉了,如果你需要对训练的过程做一些额外的控制的话可能不太方便(当然理论上应该也可以在回调函数中来做),不过对我来说,最大的问题是模型训练时似乎收敛的太慢了,最后的精度也不是很令人满意,具体的原因我还不是特别确定。为此我也特意用Custom Training Loop的方式来写了一下,进行对比,如果用这种方式,那么以上代码从模型的编译开始,将被以下的代码所替代,可见代码量稍微多一些,不过从我实际训练的效果来看似乎要更好一些:
train_data = train_input_fn()
val_data = val_input_fn()
START_EPOCH = 0
NUM_EPOCH = 1
STEPS_EPOCH = 0
STEPS_OFFSET = 0
with tf.device('/GPU:0'):
model = mobilenet_model_v2()
optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9)
#model = tf.keras.models.load_model('model/darknet53_custom_training_12.h5')
@tf.function
def train_step(inputs, labels):
with tf.GradientTape() as tape:
predictions = model(inputs, training=True)
regularization_loss = tf.math.add_n(model.losses)
pred_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)(labels, predictions)
total_loss = pred_loss + regularization_loss
gradients = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return total_loss
boundaries = [1000, 5000, 65000, 100000]
values = [0.001, 0.1, 0.01, 0.001, 0.0001]
learning_rate_fn = tf.keras.optimizers.schedules.PiecewiseConstantDecay(boundaries, values)
for epoch in range(NUM_EPOCH):
start_step = tf.keras.backend.get_value(optimizer.iterations)+STEPS_OFFSET
steps = start_step
loss_sum = 0
start_time = time.time()
for inputs, labels in train_data:
if (steps-start_step)>STEPS_EPOCH:
break
loss_sum += train_step(inputs, labels)
steps = tf.keras.backend.get_value(optimizer.iterations)+STEPS_OFFSET
if steps%100 == 0:
elasp_time = time.time()-start_time
lr = tf.keras.backend.get_value(optimizer.lr)
print("Step:{}, Loss:{:4.2f}, LR:{:5f}, Time:{:3.1f}s".format(steps, loss_sum/100, lr, elasp_time))
loss_sum = 0
tf.keras.backend.set_value(optimizer.lr, learning_rate_fn(steps))
start_time = time.time()
steps += 1
model.save('model/darknet53_custom_training_'+str(START_EPOCH+epoch)+'.h5')
m1 = tf.keras.metrics.SparseCategoricalAccuracy()
m2 = tf.keras.metrics.SparseTopKCategoricalAccuracy()
for inputs, labels in val_data:
val_predict_logits = model(inputs, training=False)
val_predict = tf.keras.activations.softmax(val_predict_logits)
m1.update_state(labels, val_predict)
m2.update_state(labels, val_predict)
print("Top-1 Accuracy:%f, Top-2 Accuracy:%f"%(m1.result().numpy(),m2.result().numpy()))
m1.reset_states()
m2.reset_states()
有时chrome浏览器打开(无网页内容)新的标签页的时候有书签栏,但是打开网页浏览是缺没有书签栏,这样很不方便。快捷键:Ctrl+Shift+B方法:1.首先浏览器右上角三横按钮— 设置 (或者直接在地址栏输入chrome://settings/)—外观— 选中“总是显示标签栏”。2.然后再使用快捷键ctrl + shift +B,书签栏出现了谷歌浏览器设置打开书签是在新窗口打开的四种方法如下:1...
Spring从两个角度来实现自动化装配:组件扫描(component scanning):Spring会自动发现应用上下文中所创建的bean。自动装配(autowiring):Spring自动满足bean之间的依赖下面主要介绍组件扫描方式下面创建一个接口和对应一个实现类(bean)实现类用@Component 注解package com.jdj.spring.inf;pu...
首先准备一台Linux系统机器(虚拟机也可),检测出是否安装了vsftpd软件:rpm -qa |grep vsftpd如果没有输出结果,就是没有安装。使用命令安装,安装过程中会有提示,直接输入y即可:安装完成,然后启动ftp服务:关闭Linux防火墙,否则远程不能访问:现在就可以匿名访问ftp服务器了。如果需要规定指定人有指定的路径,需要下面配置:首先在home中创建一个ftp的文件夹:创建成功...
转自https://www.cnblogs.com/tomato0906/articles/7711737.html我讲解一下c语言中动态分配内存的函数,可能有些初学c语言的人不免要问了:我们为什么要通过函数来实现动态分配内存呢?系统难道不是会自动分配内存吗??既然有人会问这样的问题,那么我在这里好好的讲解一下吧!首先让我们熟悉一下计算机的内存吧!在计算机的系统中有四个内存区域:1)栈:在...
最近要做一些图表类的需求,一开始就去github上看了看,发现开源的图表框架还是蛮多的,但是很少有完全符合我的需求的,另外就是使用起来比较麻烦,所以就决定自己来造轮子了~~~ 今天要介绍的就是Android图标系列中点阵图(姑且这么叫着吧╮(╯▽╰)╭)的画法。 效果图如下: 需求: 1. 给出几个点 画出坐标轴(用虚线) 2. 画出对应的点 在点的上方标出数值 3. 下方要显示
点击上方“Java团长”,选择“置顶公众号”干货文章第一时间送达!一初级程序员:做一些静态的界面;程序员:做一些增删改查的小模块;中级程序员:做逻辑较复杂的模块;高级程序员:做核心模块;项目经理:系统的整体架构;部门经理:多项目的管理;总裁:多部门以及企业的发展规划。二如果刚毕业,就多花几年积累经验,不可能靠一门绝技吃遍天下,不要指望java 赚钱多还是c++ or .NET 赚钱多。太早。 积累
Introduction to Parallel Programming并行程序设计导论Parallel programming should be used any time you have a fair amount of computation work that can be split up into independent chunks. Parallel programming increases the CPU usage temporarily to improve throughp
这一节我们将介绍MaxDiff最重要的一个部分,即如何分析Maxdiff数据。文章内容可能数学味道浓一些,但是别担心,绝大多数的计算只需要中学数学水平。我们希望大家明白,MaxDiff的分析并不是黑箱子,而恰恰相反,是非常简单和符合直觉判断的。在估计Maxdiff题目中每个对象的偏好效用得分时,分层贝叶斯算法(Hierarchical Bayesian)是目前最普遍采用的方法,但这种方法...
Ubuntu 16.04 amd64 (64bit)(纯净版)自带python2.7和python3.5执行”whereis python”查看当前安装的python[[email protected] ~]# whereis pythonpython: /usr/bin/python2.7 /usr/bin/python /usr/lib/python2.7 /usr/lib64/python2.7 /etc...
如何去面试一个测试工程师岗位???全手敲,少了些美观,多了些干货,面试必备葵花宝典,觉得还不错的,多多支持哦!做测试培训不少年头了,积累了一些面试的经验和技巧,接下来重点说一下如何去面试软件测试岗位以及面试所遇到的问题,希望能够帮到大家,也祝大家找到满意的软件测试工作。1 去外包还是直招的公司?对于我们学校的学生,我觉得对于第一次步入互联网行业的小白,其实哪家公司都一样的,都是为了锻炼技术,积累工作经验,每种类型岗位稍微有些差别。外包岗位优点:1.可以进入大厂(腾讯、百度、字节等)驻场工作,熟悉
Linux基础(课外版)(20210707笔记)第1章 Linux开山篇(视频P1–4)第2章 Liunx基础篇入门(视频P5–7)
移植环境(红色粗字体字为修改后内容,蓝色粗体字为特别注意内容)1,主机环境:VMare下CentOS 5.5 ,1G内存。2,集成开发环境:Elipse IDE3,编译编译环境:arm-linux-gcc v4.4.3,arm-none-linux-gnueabi-gccv4.5.1。4,开发板:mini2440,2M nor flash,128M nand flash。5,u-boot版本:u-...