YUV / RGB 格式分析及快速查表算法设计_yuv - rgb 格式分析及快速查表算法设计-程序员宅基地

技术标签: 算法  内核,操作系统,嵌入式开发  测试  adobe  存储  table  嵌入式  

作者:刘旭晖 [email protected] 转载请注明出处

http://blog.csdn.net/colorant/

1         前言
 
自然界的颜色千变万化,为了给颜色一个量化的衡量标准,就需要建立色彩空间模型来描述各种各样的颜色,由于人对色彩的感知是一个复杂的生理和心理联合作用的过程,所以在不同的应用领域中为了更好更准确的满足各自的需求,就出现了各种各样的色彩空间模型来量化的描述颜色。我们比较常接触到的就包括 RGB / CMYK / YIQ / YUV / HSI等等。
 
对于数字电子多媒体领域来说,我们经常接触到的色彩空间的概念,主要是RGB , YUV这两种(实际上,这两种体系包含了许多种具体的颜色表达方式和模型,如sRGB, Adobe RGB, YUV422, YUV420 …), RGB是按三基色加光系统的原理来描述颜色,而YUV则是按照 亮度,色差的原理来描述颜色。
 
       即使只是RGB YUV这两大类色彩空间,所涉及到的知识也是十分丰富复杂的,在下自知不具备足够的相关专业知识,所以本文主要针对工程领域的应用及算法进行讨论。
 
2         YUV相关色彩空间模型
2.1        YUV 与 YIQ YcrCb
对于YUV模型,实际上很多时候,我们是把它和YIQ / YCrCb模型混为一谈的。
实际上,YUV模型用于PAL制式的电视系统,Y表示亮度,UV并非任何单词的缩写。
YIQ模型与YUV模型类似,用于NTSC制式的电视系统。YIQ颜色空间中的I和Q分量相当于将YUV空间中的UV分量做了一个33度的旋转。
YCbCr颜色空间是由YUV颜色空间派生的一种颜色空间,主要用于数字电视系统中。从RGB到YCbCr的转换中,输入、输出都是8位二进制格式。
三者与RGB的转换方程如下:
RGB -> YUV
实际上也就是:
Y=0.30R+0.59G+0.11B U=0.493(B Y) V=0.877(R Y)
 
RGB -> YIQ
 
RGB -> YCrCb
从公式中,我们关键要理解的一点是,UV / CbCr信号实际上就是蓝色差信号和红色差信号,进而言之,实际上一定程度上间接的代表了蓝色和红色的强度,理解这一点对于我们理解各种颜色变换处理的过程会有很大的帮助。
我们在数字电子多媒体领域所谈到的YUV格式,实际上准确的说,是以YcrCb色彩空间模型为基础的具有多种存储格式的一类颜色模型的家族(包括YUV444 / YUV422 / YUV420 / YUV420P等等)。并不是传统意义上用于PAL制模拟电视的YUV模型。这些YUV模型的区别主要在于UV数据的采样方式和存储方式,这里就不详述。
而在Camera Sensor中,最常用的YUV模型是 YUV422格式,因为它采用4个字节描述两个像素,能和RGB565模型比较好的兼容。有利于Camera Sensor和Camera controller的软硬件接口设计。
 
3         YUV2RGB快速算法分析
这里指的YUV实际是YcrCb了 8 ) YUV2RGB的转换公式本身是很简单的,但是牵涉到浮点运算,所以,如果要实现快速算法,算法结构本身没什么好研究的了,主要是采用整型运算或者查表来加快计算速度。
首先可以推导得到转换公式为:
       R = Y + 1.4075 *(V-128)
       G = Y – 0.3455 *(U –128) – 0.7169 *(V –128)
       B = Y + 1.779 *(U – 128)
3.1        整型算法
要用整型运算代替浮点运算,当然是要用移位的办法了,我们可以很容易得到下列算法:
 
       u = YUVdata[UPOS] - 128;
       v = YUVdata[VPOS] - 128;
      
rdif = v + ((v * 103) >> 8);
       invgdif = ((u * 88) >> 8) +((v * 183) >> 8);
       bdif = u +( (u*198) >> 8);
 
       r = YUVdata[YPOS] + rdif;
       g = YUVdata[YPOS] - invgdif;
       b = YUVdata[YPOS] + bdif;
 
为了防止出现溢出,还需要判错计算的结果是否在0-255范围内,做类似下面的判断。
       if (r>255)
              r=255;
       if (r<0)
              r=0;
要从RGB24转换成RGB565数据还要做移位和或运算:
       RGBdata[1] =( (r & 0xF8) | ( g >> 5) );
       RGBdata[0] =( ((g & 0x1C) << 3) | ( b >> 3) );
3.2        部分查表法
查表法首先可以想到的就是用查表替代上述整型算法中的乘法运算。
       rdif = fac_1_4075[u];
       invgdif = fac_m_0_3455[u] + fac_m_0_7169[v];
       bdif = fac_1_779[u];
这里一共需要4个1维数组,下标从0开始到255,表格共占用约1K的内存空间。uv可以不需要做减128的操作了。在事先计算对应的数组元素的值的时候计算在内就好了。
对于每个像素,部分查表法用查表替代了2次减法运算和4次乘法运算,4次移位运算。但是,依然需要多次加法运算和6次比较运算和可能存在的赋值操作,相对第一种方法运算速度提高并不明显。
3.3        完全查表法
那么是否可以由YUV直接查表得到对应的RGB值呢?乍一看似乎不太可能,以最复杂的G的运算为例,因为G与YUV三者都相关,所以类似 G=YUV2G[Y][U][V]这样的算法,一个三维下标尺寸都为256的数组就需要占用2的24次方约16兆空间,绝对是没法接受的。所以目前多数都是采用部分查表法。
但是,如果我们仔细分析就可以发现,对于G我们实际上完全没有必要采用三维数组,因为Y只与UV运算的结果相关,与UV的个体无关,所以我们可以采用二次查表的方法将G的运算简化为对两个二维数组的查表操作,如下:
G = yig2g_table[ y ][ uv2ig_table[ u ][ v ] ];
而RB本身就只和YU或YV相关,所以这样我们一共需要4个8*8的二维表格,需要占用4乘2的16次方共256K内存。基本可以接受。但是对于手机这样的嵌入式运用来说,还是略有些大了。
进一步分析,我们可以看到,因为在手机等嵌入式运用上我们最终是要把数据转换成RGB565格式送到LCD屏上显示的,所以,对于RGB三分量来说,我们根本不需要8bit这么高的精度,为了简单和运算的统一起见,对每个分量我们其实只需要高6bit的数据就足够了,所以我们可以进一步把表格改为4个6*6的二维表格,这样一共只需要占用16K内存!在计算表格元素值的时候还可以把最终的溢出判断也事先做完。最后的算法如下:
 
y = (YUVdata[Y1POS] >> 2);
u = (YUVdata[UPOS] >> 2);
    v = (YUVdata[VPOS] >> 2);
   
    r = yv2r_table[ y ][ v ];
    g = yig2g_table[ y ][ uv2ig_table[ u ][ v ] ];
    b = yu2b_table[ y ][ u ];
   
    RGBdata[1] =( (r & 0xF8) | ( g >> 5) );
    RGBdata[0] =( ((g & 0x1C) << 3) | ( b >> 3) );
 
这样相对部分查表法,我们增加了3次移位运算,而进一步减少了4次加法运算和6次比较赋值操作。
在计算表格元素数值的时候,要考虑舍入和偏移等因数使得计算的中间结果满足数组下标非负的要求,需要一定的技巧:
采用完全查表法,相对于第一种算法,最终运算速度可以有比较明显的提高,具体性能能提高多少,要看所在平台的CPU运算速度和内存存取速度的相对比例。内存存取速度越快,用查表法带来的性能改善越明显。在我的PC上测试的结果性能大约能提高35%。而在某ARM平台上测试只提高了约15%。
3.4        进一步的思考
实际上,上述算法:
    RGBdata[1] =( (r & 0xF8) | ( g >> 5) );
       RGBdata[0] =( ((g & 0x1C) << 3) | ( b >> 3) );
中的 (r & 0xF8) 和 ( b >> 3) 等运算也完全可以在表格中事先计算出来。另外,YU / YV的取值实际上不可能覆盖满6*6的范围,中间有些点是永远取不到的无输入,RB的运算也可以考虑用5*5的表格。这些都可能进一步提高运算的速度,减小表格的尺寸。
另外,在嵌入式运用中,如果可能尽量将表格放在高速内存如SRAM中应该比放在SDRAM中更加能发挥查表法的优势。
4         RGB2YUV ?
目前觉得这个是没法将3维表格的查表运算化简为2维表格的查表运算了。只能用部分查表法替代其中的乘法运算。
另外,多数情况下,我们需要的还是YUV2RGB的转换,因为从Sensor得到的数据通常我们会用YUV数据,此外JPG和MPEG实际上也是基于YUV格式编码的,所以要显示解码后的数据需要的也是YUV2RGB的运算 8 )运气运气。
 
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/colorant/article/details/1913162

智能推荐

苹果https java_apple登录 后端java实现最终版-程序员宅基地

文章浏览阅读298次。import com.alibaba.fastjson.JSONArray;import com.alibaba.fastjson.JSONObject;import com.auth0.jwk.Jwk;import com.helijia.appuser.modules.user.vo.AppleCredential;import com.helijia.common.api.model.Api..._com.auth0.jwk.jwk

NLP学习记录(六)最大熵模型MaxEnt_顺序潜在最大熵强化学习(maxent rl)-程序员宅基地

文章浏览阅读4.7k次。原理在叧掌握关于未知分布的部分信息的情况下,符合已知知识的概率分布可能有夗个,但使熵值最大的概率分布最真实地反映了事件的的分布情况,因为熵定义了随机变量的不确定性,弼熵值最大时,随机变量最不确定,最难预测其行为。最大熵模型介绍我们通过一个简单的例子来介绍最大熵概念。假设我们模拟一个翻译专家的决策过程,关于英文单词in到法语单词的翻译。我们的翻译决策模型p给每一个单词或短语分配一..._顺序潜在最大熵强化学习(maxent rl)

计算机毕业设计ssm科研成果管理系统p57gs系统+程序+源码+lw+远程部署-程序员宅基地

文章浏览阅读107次。计算机毕业设计ssm科研成果管理系统p57gs系统+程序+源码+lw+远程部署。springboot基于springboot的影视资讯管理系统。ssm基于SSM高校教师个人主页网站的设计与实现。ssm基于JAVA的求职招聘网站的设计与实现。springboot校园头条新闻管理系统。ssm基于SSM框架的毕业生离校管理系统。ssm预装箱式净水站可视化信息管理系统。ssm基于SSM的网络饮品销售管理系统。

Caused by: org.xml.sax.SAXParseException; lineNumber: 38; columnNumber: 9; cvc-complex-type.2.3: 元素_saxparseexception; linenumber: 35; columnnumber: 9-程序员宅基地

文章浏览阅读1.6w次。不知道大家有没有遇到过与我类似的报错情况,今天发生了此错误后就黏贴复制了报错信息“Caused by: org.xml.sax.SAXParseException; lineNumber: 38; columnNumber: 9; cvc-complex-type.2.3: 元素 'beans' 必须不含字符 [子级], 因为该类型的内容类型为“仅元素”。”然后就是一顿的百度啊, 可一直都没有找到..._saxparseexception; linenumber: 35; columnnumber: 9; cvc-complex-type.2.3:

计算机科学与技术创新创业意见,计算机科学与技术学院大学生创新创业工作会议成功举行...-程序员宅基地

文章浏览阅读156次。(通讯员 粟坤萍 2018-04-19)4月19日,湖北师范大学计算机科学与技术学院于教育大楼学院会议室1110成功召开大学生创新创业工作会议。参与本次会议的人员有党总支副书记黄海军老师,创新创业学院吴杉老师,计算机科学与技术学院创新创业活动指导老师,15、16、17级各班班主任及学生代表。首先吴杉老师介绍了“互联网+”全国大学生创新创业大赛的相关工作进度,动员各级班主任充分做好“大学生创新创业大..._湖北师范 吴杉

【Android逆向】爬虫进阶实战应用必知必会-程序员宅基地

文章浏览阅读1.1w次,点赞69次,收藏76次。安卓逆向技术是一门深奥且充满挑战的领域。通过本文的介绍,我们了解了安卓逆向的基本概念、常用工具、进阶技术以及实战案例分析。然而,逆向工程的世界仍然在不断发展和变化,新的技术和方法不断涌现。展望未来,随着安卓系统的不断更新和加固,逆向工程将面临更大的挑战。同时,随着人工智能和机器学习技术的发展,我们也许能够看到更智能、更高效的逆向工具和方法的出现。由于篇幅限制,本文仅对安卓逆向技术进行了介绍和案例分析。

随便推点

Python数据可视化之环形饼图_数据可视化绘制饼图或圆环图-程序员宅基地

文章浏览阅读1.1k次。制作饼图还需要下载pyecharts库,Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。随着学习python的热潮不断增加,Python数据可视化也不停的被使用,那我今天就介绍一下Python数据可视化中的饼图。在我们的生活和学习中,编程是一项非常有用的技能,能够丰富我们的视野,为各行各业的领域提供了新的角度。环形饼图的制作并不难,主要是在于数据的打包和分组这里会有点问题,属性的标签可以去 这个网站进行修改。图中的zip压缩函数,并分组打包。_数据可视化绘制饼图或圆环图

SpringMVC开发技术~5~基于注解的控制器_jsp/servlet到controller到基于注解的控制器-程序员宅基地

文章浏览阅读325次。1 Spring MVC注解类型Controller和RequestMapping注释类型是SpringMVC API最重要的两个注释类型。基于注解的控制器的几个优点:一个控制器类可以控制几个动作,而一个实现了Controller接口的控制器只能处理一个动作。这就允许将相关操作写在一个控制器类内,从而减少应用类的数量基于注解的控制器的请求映射不需要存储在配置文件中,而是使用RequestM..._jsp/servlet到controller到基于注解的控制器

利用波特图来满足动态控制行为的要求-程序员宅基地

文章浏览阅读260次,点赞3次,收藏4次。相位裕量可以从增益图中的交越频率处读取(参见图2)。使用的开关频率、选择的外部元件(例如电感和输出电容),以及各自的工作条件(例如输入电压、输出电压和负载电流)都会产生巨大影响。图2所示为波特图中控制环路的增益曲线,其中提供了两条重要信息。对于图2所示的控制环路,这个所谓的交越频率出现在约80 kHz处。通过使用波特图,您可以查看控制环路的速度,特别是其调节稳定性。图2. 显示控制环路增益的波特图(约80 kHz时,达到0 dB交越点)。图3. 控制环路的相位曲线,相位裕量为60°。

Glibc Error: `_obstack@GLIBC_2.2.5‘ can‘t be versioned to common symbol ‘_obstack_compat‘_`_obstack@glibc_2.2.5' can't be versioned to commo-程序员宅基地

文章浏览阅读1.8k次。Error: `_obstack@GLIBC_2.2.5’ can’t be versioned to common symbol '_obstack_compat’原因:https://www.lordaro.co.uk/posts/2018-08-26-compiling-glibc.htmlThis was another issue relating to the newer binutils install. Turns out that all was needed was to initi_`_obstack@glibc_2.2.5' can't be versioned to common symbol '_obstack_compat

基于javaweb+mysql的电影院售票购票电影票管理系统(前台、后台)_电影售票系统javaweb-程序员宅基地

文章浏览阅读3k次。基于javaweb+mysql的电影院售票购票电影票管理系统(前台、后台)运行环境Java≥8、MySQL≥5.7开发工具eclipse/idea/myeclipse/sts等均可配置运行适用课程设计,大作业,毕业设计,项目练习,学习演示等功能说明前台用户:查看电影列表、查看排版、选座购票、查看个人信息后台管理员:管理电影排版,活动,会员,退票,影院,统计等前台:后台:技术框架_电影售票系统javaweb

分分钟拯救监控知识体系-程序员宅基地

文章浏览阅读95次。分分钟拯救监控知识体系本文出自:http://liangweilinux.blog.51cto.com0 监控目标我们先来了解什么是监控,监控的重要性以及监控的目标,当然每个人所在的行业不同、公司不同、业务不同、岗位不同、对监控的理解也不同,但是我们需要注意,监控是需要站在公司的业务角度去考虑,而不是针对某个监控技术的使用。监控目标1.对系统不间断实时监控:实际上是对系统不间..._不属于监控目标范畴的是 实时反馈系统当前状态

推荐文章

热门文章

相关标签