技术标签: 算法 时间复杂度 python常用算法 排序算法 算法定义 简单算法
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,时间复杂度常用大O符号(大O符号(Big O notation)是用于描述函数渐进行为的数学符号。更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。在数学中,它一般用来刻画被截断的无穷级数尤其是渐近级数的剩余项;在计算机科学中,它在分析算法复杂性的方面非常有用。)表述,使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况。
大O,简而言之可以认为它的含义是“order of”(大约是)。
无穷大渐近
大O符号在分析算法效率的时候非常有用。举个例子,解决一个规模为 n 的问题所花费的时间(或者所需步骤的数目)可以被求得:T(n) = 4n^2 - 2n + 2。 当 n 增大时,n^2; 项将开始占主导地位,而其他各项可以被忽略——举例说明:当 n = 500,4n^2; 项是 2n 项的1000倍大,因此在大多数场合下,省略后者对表达式的值的影响将是可以忽略不计的。
1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。
一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
2.一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))。随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。
3.常见的时间复杂度
按数量级递增排列,常见的时间复杂度有:
常数阶O(1), 对数阶O(log2n), 线性阶O(n), 线性对数阶O(nlog2n), 平方阶O(n^2), 立方阶O(n^3),…, k次方阶O(n^k), 指数阶O(2^n) 。
例:算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3
}
}
则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级
则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c
则该算法的 时间复杂度:T(n)=O(n^3)
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。
当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。
我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。
此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。
“大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。
这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
O(n^2)
2.1. 交换i和j的内容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++) (n^2次 )
sum++; (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)
2.2.
for (i=1;i<n;i++)
{
y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②
}
解: 语句1的频度是n-1
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
该程序的时间复杂度T(n)=O(n^2).
O(n)
2.3.
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
{
s=a+b; ③
b=a; ④
a=s; ⑤
}
解:语句1的频度:2,
语句2的频度: n,
语句3的频度: n-1,
语句4的频度:n-1,
语句5的频度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).
O(log2n )
2.4.
i=1; ①
while (i<=n)
i=i*2; ②
解: 语句1的频度是1,
设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=log2n
取最大值f(n)= log2n,
T(n)=O(log2n )
O(n^3)
2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
Redis不支持直接将Java对象存储到数据库中,所以需要将java对象进行序列化得到字节数组,然后将字节数组存入到redis中,需要数据的时候就从redis数据库中取出字节数组,再经过反序列化将自己数组转换成对象使用(jdk序列化性能比谷歌公司的Protobuf序列化性能要差一些,而且序列化后的字节长度要也会长一些,所以推荐使用Protobuf,Protobuf如何进行序列化请看我的另一篇帖子)
在统计项目中,最难实施的就是日志数据的收集。日志分布在全国各个机房,而且数据量比较大,像rsync+inotify这种方式显然不能满足快速日志同步的要求。 当然大家也可以用fluentd和flume采集日志数据,除了这个我们也可以自己写一套简单的。 我写的这个日志分析系统 流程是:1 在客户端收集数据,然后通过redis pub方式把数据发给服务端 2 服务器端是r...
每隔2秒调用自定义事件recv_Data
import pymysql## 连接数据库def connection(): connect = pymysql.Connect( host='10.203.39.62', port=3306, user='root', passwd='bdpptyfbyw', db='bdp', charset='utf8' ) return connect## 增加def in.
数据结构实验 二叉树的基本操作实验环境: Visual C++实验目的:1.掌握二叉树的定义;2.掌握二叉树的基本操作,如二叉树的建立、遍历、结点个数统计、树的深 度计算等。实验内容:用递归的方法实现以下算法:1.以二叉链表表示二叉树,建立一棵二叉树;2.输出二叉树的中序遍历结果;3.输出二叉树的前序遍历结果;4.输出二叉树的后序遍历结果;5.计算二叉树的深度...
http://blog.csdn.net/b_h_l/article/details/199850612014.021:linux下源码编译./configure --prefix=/usr/local/curl --disable-shared --enable-static --without-libidn--without-ssl --without-librtmp --without-gn...
with open(path, 'wb') as csv_file: csv_write = csv.writer(csv_file) csv_head = ["A", "B"] csv_write.writerow(csv_head)运行错误提示:TypeError: a bytes-like object is required, ...
# LOG ## Log简介 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级、日志保存路径、日志文件回滚等;相比print,具备如下优点: 通过log的分析,可以方便用户了解系统或软件、应用的运行情况;如果你的应用log足够丰富,也可以分析以往用户的操作行为、类型喜好、地域分布或其他更多信息;如果一个应用的log同时也分了多个级...
C++面试题C++基本知识点
C语言实现生成1到100随机数的方法发布时间:2020-06-29 14:08:59来源:亿速云阅读:7054作者:Leah本篇文章为大家展示了C语言实现生成1到100随机数的方法,代码简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。生成10个1~100的随机数废话不多说直接上程序。#include#include#includeintmain(){intr...
最近看到很多抱怨贴,也许有一定的道理,但是你想过没,为什么大部分.NET程序员工资相对低?我个人是这么看的:大批半罐子水的程序员,永远被局限在.NET的原始的小圈圈里。前端不会(你放弃了一项很重要的技术),SQL写不好(那估计你 的业务能力也就一般,项目管理或者业务方面看来发展前景不大好),Linq也用不来(看来你连.NET的东西都没玩好,而且你错过了一个开发效率极高的东 东),Sha...
为什么80%的码农都做不了架构师?>>> ...