动态规划_动态规划方法是运筹学方法吗-程序员宅基地

技术标签: 数据结构  

1. 什么是动态规划

从数学的视角来看,动态规划是一种运筹学方法,是在多轮决策过程中的最优方法。

那么,什么是多轮决策呢?其实多轮决策的每一轮都可以看作是一个子问题。从分治法的视角来看,每个子问题必须相互独立。但在多轮决策中,这个假设显然不成立。这也是动态规划方法产生的原因之一

2. 最短路径问题

接下来看一个非常典型的例子,最短路径问题。如下图所示:
在这里插入图片描述
每个结点是一个位置,每条边是两个位置之间的距离。现在需要求解出一条由 A 到 G 的最短距离是多少。

不难发现,我们需要求解的路线是由 A 到 G,这就意味着 A 要先到 B,再到 C,再到 D,再到 E,再到 F。每一轮都需要做不同的决策,而每次的决策又依赖上一轮决策的结果。

例如,做 D2 -> E 的决策时,D2 -> E2 的距离为 1,最短。但这轮的决策,基于的假设是从 D2 出发,这就意味着前面一轮的决策结果是 D2。由此可见,相邻两轮的决策结果并不是独立的

动态规划还有一个重要概念叫作状态。在这个例子中,状态是个变量,而且受决策动作的影响。例如,第一轮决策的状态是 S1,可选的值是 A,第二轮决策的状态是 S2,可选的值就是 B1 和 B2。以此类推。

3. 动态规划的基本方法

动态规划问题之所以难,是因为动态规划的解题方法并没有那么标准化,它需要你因题而异,仔细分析问题并寻找解决方案。虽然动态规划问题没有标准化的解题方法,但它有一些宏观层面通用的方法论

下面的 k 表示多轮决策的第 k 轮

  1. 分阶段,将原问题划分成几个子问题。一个子问题就是多轮决策的一个阶段,它们可以是不满足独立性的。
  2. 找状态,选择合适的状态变量 Sk。它需要具备描述多轮决策过程的演变,更像是决策可能的结果。
  3. 做决策,确定决策变量 uk。每一轮的决策就是每一轮可能的决策动作,例如 D2 的可能的决策动作是 D2 -> E2 和 D2 ->E3。
  4. 状态转移方程。这个步骤是动态规划最重要的核心,即 sk+1= uk(sk) 。
  5. 定目标。写出代表多轮决策目标的指标函数 Vk,n。
  6. 寻找终止条件。

了解了方法论、状态、多轮决策之后,我们再补充一些动态规划的基本概念。

  • 策略,每轮的动作是决策,多轮决策合在一起常常被称为策略。
  • 策略集合,由于每轮的决策动作都是一个变量,这就导致合在一起的策略也是一个变量。我们通常会称所有可能的策略为策略集合。因此,动态规划的目标,也可以说是从策略集合中,找到最优的那个策略。

一般而言,具有如下几个特征的问题,可以采用动态规划求解:

  1. 最优子结构。它的含义是,原问题的最优解所包括的子问题的解也是最优的。例如,某个策略使得 A 到 G 是最优的。假设它途径了Fi,那么它从 A 到 Fi 也一定是最优的。
  2. 无后效性。某阶段的决策,无法影响先前的状态。可以理解为今天的动作改变不了历史。
  3. 有重叠子问题。也就是,子问题之间不独立。这个性质是动态规划区别于分治法的条件。如果原问题不满足这个特征,也是可以用动态规划求解的,无非就是杀鸡用了宰牛刀。
4. 案例

到这里,动态规划的概念和方法就讲完了。接下来,我们以最短路径问题再来看看动态规划的求解方法。在这个问题中,你可以采用最暴力的方法,那就是把所有的可能路径都遍历一遍,去看哪个结果的路径最短的。如果采用动态规划方法,那么我们按照方法论来执行。

4.1 动态规划的求解方法
具体的解题步骤如下:

  • 分阶段 很显然,从 A 到 G,可以拆分为 A -> B、B -> C、C -> D、D -> E、E -> F、F -> G,6
    个阶段。

  • 找状态
    第一轮的状态 S1 = A,第二轮 S2 = {B1,B2},第三轮 S3 = {C1,C2,C3,C4},第四轮 S4 = {D1,D2,D3},第五轮 S5 = {E1,E2,E3},第六轮 S6 = {F1,F2},第七轮 S7 = {G}。

  • 做决策
    决策变量就是上面图中的每条边。我们以第四轮决策 D -> E 为例来看,可以得到 u4(D1),u4(D2),u4(D3)。其中 u4(D1) 的可能结果是 E1 和 E2。

  • 写出状态转移方程
    在这里,就是 sk+1 = uk(sk)。

  • 定目标
    别忘了,我们的目标是总距离最短。我们定义 dk(sk,uk) 是在 sk 时,选择 uk 动作的距离。例如,d5(E1,F1) = 3。那么此时 n = 7,则有,
    v k , 7 ( s 1 = A , s 7 = G ) = ∑ k = 1 7 d k ( s k , u k ) v_{k, 7}\left(s_{1}=A, s_{7}=G\right)=\sum_{k=1}^{7} d_{k}\left(s_{k}, u_{k}\right) vk,7(s1=A,s7=G)=k=17dk(sk,uk)
    就是最终要优化的目标。

  • 寻找终止条件

  • 很显然,这里的起止条件分别是,s1 = A 和 s7 = G。

  • 接下来,我们把所有的已知条件,凝练为上面的符号之后,只需要借助最优子结构,就可以把问题解决了。最优子结构的含义是,原问题的最优解所包括的子问题的解也是最优的。

  • 套用在这个例子的含义就是,如果 A -> … -> F1 -> G 是全局 A 到 G 最优的路径,那么此处 A -> … ->
    F1 也是 A 到 F1 的最优路径。

  • 因此,此时的优化目标 min Vk,7(s1=A, s7=G),等价于 min { Vk,6(s1=A, s6=F1)+4,
    Vk,6(s1=A, s6=F2)+3 }。

  • 此时,优化目标的含义为,从 A 到 G 的最短路径,是 A 到 F1 到 G 的路径和 A 到 F2 到 G 的路径中更短的那个。

  • 同样的,对于上面式子中,Vk,6(s1=A,s6=F1) 和 Vk,6(s1=A,s6=F2),仍然可以递归地使用上面的分析方法。

4.2 计算过程详解
好了,为了让大家清晰地看到结果,我们给出详细的计算过程。为了书写简单,我们把函数 Vk,7(s1=A, s7=G) 精简为 V7(G),含义为经过了 6 轮决策后,状态到达 G 后所使用的距离。我们把图片复制到这里一份,方便大家不用上下切换。
在这里插入图片描述
我们的优化目标为 min Vk,7(s1=A, s7=G),因此精简后原问题为,min V7(G)。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

因此,最终输出路径为 A -> B1 -> C2 -> D1 -> E2 -> F2 -> G,最短距离为 18

4.3 代码实现过程
接下来,我们尝试用代码来实现上面的计算过程。对于输入的图,可以采用一个 m x m 的二维数组来保存。在这个二维数组里,m 等于全部的结点数,也就是结点与结点的关系图。而数组每个元素的数值,定义为结点到结点需要的距离。
在这里插入图片描述
在本例中,可以定义输入矩阵 m(空白处为0),如下图所示:
在这里插入图片描述

代码如下:

public class testpath {
    
    public static int minPath1(int[][] matrix) {
    
        return process1(matrix, matrix[0].length-1);
    }
    // 递归
    public static int process1(int[][] matrix, int i) {
    
        // 到达A退出递归
        if (i == 0) {
    
            return 0;
        }
        // 状态转移
        else{
    
            int distance = 999;
            for(int j=0; j<i; j++){
    
                if(matrix[j][i]!=0){
    
                    int d_tmp = matrix[j][i] + process1(matrix, j);
                    if (d_tmp < distance){
    
                        distance = d_tmp;
                    }
                }
            }
            return distance;
        }
    }
    public static void main(String[] args) {
    
        int[][] m = {
    {
    0,5,3,0,0,0,0,0,0,0,0,0,0,0,0,0},{
    0,0,0,1,3,6,0,0,0,0,0,0,0,0,0,0},{
    0,0,0,0,8,7,6,0,0,0,0,0,0,0,0,0},{
    0,0,0,0,0,0,0,6,8,0,0,0,0,0,0,0},{
    0,0,0,0,0,0,0,3,5,0,0,0,0,0,0,0},{
    0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0},{
    0,0,0,0,0,0,0,0,8,4,0,0,0,0,0,0},{
    0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0},{
    0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0},{
    0,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0},{
    0,0,0,0,0,0,0,0,0,0,0,0,0,3,5,0},{
    0,0,0,0,0,0,0,0,0,0,0,0,0,5,2,0},{
    0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,0},{
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4},{
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3}};
        System.out.println(minPath1(m));
    }
}

代码解读:

代码的 27 行是主函数,在代码中定义了二维数组 m,对应于输入的距离图。m 是 15 x 16 维的,我们忽略了最后一行的全 0(即使输入也不会影响结果)。

然后调用函数 minPath1。在第 2 到第 4 行,它的内部又调用了 process1(matrix, matrix[0].length-1)。在这里,matrix[0].length-1 的值是 15,表示的含义是 matrix 数组的第 16 列(G)是目的地。

接着进入 process1 函数中。我们知道在动态规划的过程中,是从后往前不断地推进结果,这就是状态转移的过程。对应代码中的 13-24 行

  • 第 15 行开始循环,j 变量是纵向的循环变量。
  • 第 16 行判断 matrix[j][i] 与 0 的关系,含义为,只有值不为 0 才说明两个结点之间存在通路。
  • 一旦发现某个通路,就需要计算其距离。计算的方式是 17 行的
    d_tmp = matrix[j][i] + process1(matrix, j)
  • 当得到了距离之后,还需要找到最短的那个距离,也就是 18 到 20 行的含义。这就是动态规划最优子结构的体现。
  • 一旦 i 减小到了 0,就说明已经到了起点 A。那么 A 到 A 的距离就是 0,直接第 10 行的 return 0 就可以了。
  • 经过运行,这段代码的输出结果是 18,这与我们手动的推导结果一致。
    本文参考拉钩教育学习视频
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Yangchenju/article/details/107870073

智能推荐

射频识别技术漫谈(6-10)_芯片 ttf模式-程序员宅基地

文章浏览阅读2k次。射频识别技术漫谈(6-10),概述RFID的通讯协议;射频ID卡的原理与实现,数据的传输与解码;介绍动物标签属性与数据传输;RFID识别号的变化等_芯片 ttf模式

Python 项目实战 —— 手把手教你使用 Django 框架实现支付宝付款_django 对接支付宝接口流程-程序员宅基地

文章浏览阅读1.1k次。今天小编心血来潮,为大家带来一个很有趣的项目,那就是使用 Python web 框架 Django 来实现支付宝支付,废话不多说,一起来看看如何实现吧。_django 对接支付宝接口流程

Zabbix 5.0 LTS在清理历史数据后最新数据不更新_zabbix问题没有更新-程序员宅基地

文章浏览阅读842次。Zabbix 5.0 LTS,跑了一年多了一直很稳定,前两天空间显示快满了,于是手贱清理了一下history_uint表(使用mysql truncate),结果折腾了一周。大概故障如下:然后zabbix论坛、各种群问了好久都没解决,最后自己一番折腾似乎搞定了。初步怀疑,应该是由于历史数据被清空后,zabbix需要去处理数据,但是数据量太大,跑不过来,所以来不及更新了(?)..._zabbix问题没有更新

python学习历程_基础知识(2day)-程序员宅基地

文章浏览阅读296次。一、数据结构之字典 key-value

mybatis-plus字段策略注解strategy_mybatisplus strategy-程序员宅基地

文章浏览阅读9.7k次,点赞3次,收藏13次。最近项目中遇到一个问题,是关于mybatis-plus的字段注解策略,记录一下。1问题调用了A组件(基础组件),来更新自身组件的数据,发现自己组件有个字段总是被清空。2原因分析调用的A组件的字段,属于基础字段,自己业务组件,对这个基础字段做了扩展,增加了业务字段。但是在自己的组件中的实体注解上,有一个注解使用错误。mybatis-plus封装的updateById方法,如果..._mybatisplus strategy

mx250显卡天梯图_2020年最新笔记本显卡天梯图,看看你的显卡排在哪!-程序员宅基地

文章浏览阅读1.5k次。显卡天梯图就是显卡的性能排行榜,目前显卡主要有Nvidia(英伟达)和AMD(超微半导体)两大品牌。我们都知道,显卡性能决定了电脑的图像处理能力。对于喜欢玩游戏的电脑用户来说,处理器和显卡是用户最关心的电脑硬件,一块好的显卡对于游戏的运行效率、画面显示会起到重要作用。下面小编就和大家分享一下2020年1月笔记本显卡天梯图,有需要的朋友可以参考参考。2020最新笔记本显卡天梯图以下就是2020年1月..._显卡geforce mx250和gtx1660

随便推点

信息检索笔记-索引构建_为某一文档及集构件词项索引时,可使用哪些索引构建方法-程序员宅基地

文章浏览阅读3.8k次。如何构建倒排索引,我们将这个过程叫做“索引构建”。如果我们的文档很多,这样索引就一次性装不下内存,该如何构建。硬件的限制 我们知道ram读写是随机的操作,只要输入相应的地址单元就能瞬间将数据读出来或者写进去。但是磁盘不行,磁盘必须有一个寻道的过程,外加一个旋转时间。那么只有涉及到磁盘,我们就可以考虑怎么节省I/O操作时间。【注】操作系统往往以数据块为单位进行读写。因为读一_为某一文档及集构件词项索引时,可使用哪些索引构建方法

IT巨头英特尔看好中国市场前景-程序员宅基地

文章浏览阅读836次。英特尔技术与制造事业部副总裁卞成刚7日在财富论坛间隙接受中新社记者采访时表示,该公司看好中国市场前景,扎根中国并以此走向世界是目前最重要的战略之一。卞成刚说,目前该公司正面临战略转型,即从传统PC服务领域扩展至所有智能设施领域,特别是移动终端。而中国目前正引领全球手机市场,预计未来手机、平板电脑等方面的发明创新将大量在中国市场涌现,并推向全球。持相同态度的还有英特尔中国区执行董事戈峻。戈峻

ceph中的radosgw相关总结_radosgw -c-程序员宅基地

文章浏览阅读627次。https://blog.csdn.net/zrs19800702/article/details/53101213http://blog.csdn.net/lzw06061139/article/details/51445311https://my.oschina.net/linuxhunter/blog/654080rgw 概述Ceph 通过radosgw提供RES..._radosgw -c

前端数据可视化ECharts使用指南——制作时间序列数据的可视化曲线_echarts 时间序列-程序员宅基地

文章浏览阅读3.7k次,点赞6次,收藏9次。我为什么选择ECharts ? 本周学校课程设计,原本随机佛系选了一个51单片机来做音乐播放器,结果在粗略玩了CN-DBpedia两天后才回过神,课设还没有开始整。于是懒癌发作,碍于身上还有比赛的作品没交,本菜鸡对硬件也没啥天赋,所以就直接把题目切换成软件方面的题目。写python的同学选择了一个时间序列数据的可视化曲线程序设计题目,果真python在数据可视化这一点性能很优秀。..._echarts 时间序列

ApplicationEventPublisherAware事件发布-程序员宅基地

文章浏览阅读1.6k次。事件类:/** * *   * @className: EarlyWarnPublishEvent *   * @description:数据风险预警发布事件 *   * @param: *   * @return: *   * @throws: *   * @author: lizz *   * @date: 2020/05/06 15:31 * */public cl..._applicationeventpublisheraware

自定义View实现仿朋友圈的图片查看器,缩放、双击、移动、回弹、下滑退出及动画等_imageview图片边界回弹-程序员宅基地

文章浏览阅读1.2k次。如需转载请注明出处!点击小图片转到图片查看的页面在Android开发中很常用到,抱着学习和分享的心态,在这里写下自己自定义的一个ImageView,可以实现类似微信朋友圈中查看图片的功能和效果。主要功能需求:1.缩放限制:自由缩放,有最大和最小的缩放限制 2居中显示:.若图片没充满整个ImageView,则缩放过程将图片居中 3.双击缩放:根据当前缩放的状态,双击放大两倍或缩小到原来 4.单指_imageview图片边界回弹