技术标签: 算法
超级复杂各种高精度操作大合集(希望整个生涯都不会完整的敲一遍)
#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<string>
#include<iosfwd>
#define MAX_L 505 //最大长度,可以修改
using namespace std;
class bign
{
public:
int len, s[MAX_L];//数的长度,记录数组
//构造函数
bign();
bign(const char*);
bign(int);
bool sign;//符号 1正数 0负数
string toStr() const;//转化为字符串,主要是便于输出
friend istream& operator>>(istream &,bign &);//重载输入流
friend ostream& operator<<(ostream &,bign &);//重载输出流
//重载复制
bign operator=(const char*);
bign operator=(int);
bign operator=(const string);
//重载各种比较
bool operator>(const bign &) const;
bool operator>=(const bign &) const;
bool operator<(const bign &) const;
bool operator<=(const bign &) const;
bool operator==(const bign &) const;
bool operator!=(const bign &) const;
//重载四则运算
bign operator+(const bign &) const;
bign operator++();
bign operator++(int);
bign operator+=(const bign&);
bign operator-(const bign &) const;
bign operator--();
bign operator--(int);
bign operator-=(const bign&);
bign operator*(const bign &)const;
bign operator*(const int num)const;
bign operator*=(const bign&);
bign operator/(const bign&)const;
bign operator/=(const bign&);
//四则运算的衍生运算
bign operator%(const bign&)const;//取模(余数)
bign factorial()const;//阶乘
bign Sqrt(const bign& num)const;//整数开根(向下取整)
bign pow(const bign&)const;//次方
//一些乱乱的函数
void clean();
~bign();
};
#define max(a,b) a>b ? a : b
#define min(a,b) a<b ? a : b
bign::bign()
{
memset(s, 0, sizeof(s));
len = 1;
sign = 1;
}
bign::bign(const char *num)
{
*this = num;
}
bign::bign(int num)
{
*this = num;
}
string bign::toStr() const
{
string res;
res = "";
int j;
for(j=len-1;s[j]==0 && j>=0;j--);
for (int i = 0; i <= j; i++)
res = (char)(s[i] + '0') + res;
if (res == "")
res = "0";
if (!sign&&res != "0")
res = "-" + res;
return res;
}
istream &operator>>(istream &in, bign &num)
{
string str;
in>>str;
num=str;
return in;
}
ostream &operator<<(ostream &out, bign &num)
{
out<<num.toStr();
return out;
}
bign bign::operator=(const char *num)
{
memset(s, 0, sizeof(s));
char a[MAX_L] = "";
if (num[0] != '-')
strcpy(a, num);
else
{
int len=strlen(num);
for (int i = 1; i < len; i++)
a[i - 1] = num[i];
}
sign = !(num[0] == '-');
len = strlen(a);
for (int i = 0; i < len; i++)
s[i] = a[len - i - 1] - 48;
return *this;
}
bign bign::operator=(int num)
{
if (num < 0)
sign = 0, num = -num;
else
sign = 1;
char temp[MAX_L];
sprintf(temp, "%d", num);
*this = temp;
return *this;
}
bign bign::operator=(const string num)
{
const char *tmp;
tmp = num.c_str();
*this = tmp;
return *this;
}
bool bign::operator<(const bign &num) const
{
if (sign^num.sign)
return num.sign;
if (len != num.len)
return len < num.len;
for (int i = len - 1; i >= 0; i--)
if (s[i] != num.s[i])
return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
return !sign;
}
bool bign::operator>(const bign&num)const
{
return num < *this;
}
bool bign::operator<=(const bign&num)const
{
return !(*this>num);
}
bool bign::operator>=(const bign&num)const
{
return !(*this<num);
}
bool bign::operator!=(const bign&num)const
{
return *this > num || *this < num;
}
bool bign::operator==(const bign&num)const
{
return !(num != *this);
}
//luogu openjudge 验证
bign bign::operator+(const bign &num) const
{
if (sign^num.sign)
{
bign tmp = sign ? num : *this;
tmp.sign = 1;
return sign ? *this - tmp : num - tmp;
}
bign result;
result.len = 0;
int temp = 0;
for (int i = 0; temp || i < (max(len, num.len)); i++)
{
int t = s[i] + num.s[i] + temp;
result.s[result.len++] = t % 10;
temp = t / 10;
}
result.sign = sign;
return result;
}
bign bign::operator++()
{
*this = *this + 1;
return *this;
}
bign bign::operator++(int)
{
bign old = *this;
++(*this);
return old;
}
bign bign::operator+=(const bign &num)
{
*this = *this + num;
return *this;
}
//luogu openjudge 验证
bign bign::operator-(const bign &num) const
{
bign b=num,a=*this;
if (!num.sign && !sign)
{
b.sign=1;
a.sign=1;
return b-a;
}
if (!b.sign)
{
b.sign=1;
return a+b;
}
if (!a.sign)
{
a.sign=1;
b=bign(0)-(a+b);
return b;
}
if (a<b)
{
bign c=(b-a);
c.sign=false;
return c;
}
bign result;
result.len = 0;
for (int i = 0, g = 0; i < a.len; i++)
{
int x = a.s[i] - g;
if (i < b.len) x -= b.s[i];
if (x >= 0) g = 0;
else
{
g = 1;
x += 10;
}
result.s[result.len++] = x;
}
result.clean();
return result;
}
bign bign::operator * (const bign &num)const
{
bign result;
result.len = len + num.len;
for (int i = 0; i < len; i++)
for (int j = 0; j < num.len; j++)
result.s[i + j] += s[i] * num.s[j];
for (int i = 0; i < result.len; i++)
{
result.s[i + 1] += result.s[i] / 10;
result.s[i] %= 10;
}
result.clean();
result.sign = !(sign^num.sign);
return result;
}
bign bign::operator*(const int num)const
{
bign x = num;
bign z = *this;
return x*z;
}
bign bign::operator*=(const bign&num)
{
*this = *this * num;
return *this;
}
bign bign::operator /(const bign&num)const
{
bign ans;
ans.len = len - num.len + 1;
if (ans.len < 0)
{
ans.len = 1;
return ans;
}
bign divisor = *this, divid = num;
divisor.sign = divid.sign = 1;
int k = ans.len - 1;
int j = len - 1;
while (k >= 0)
{
while (divisor.s[j] == 0) j--;
if (k > j) k = j;
char z[MAX_L];
memset(z, 0, sizeof(z));
for (int i = j; i >= k; i--)
z[j - i] = divisor.s[i] + '0';
bign dividend = z;
if (dividend < divid) { k--; continue; }
int key = 0;
while (divid*key <= dividend) key++;
key--;
ans.s[k] = key;
bign temp = divid*key;
for (int i = 0; i < k; i++)
temp = temp * 10;
divisor = divisor - temp;
k--;
}
ans.clean();
ans.sign = !(sign^num.sign);
return ans;
}
bign bign::operator/=(const bign&num)
{
*this = *this / num;
return *this;
}
bign bign::operator%(const bign& num)const
{
bign a = *this, b = num;
a.sign = b.sign = 1;
bign result, temp = a / b*b;
result = a - temp;
result.sign = sign;
return result;
}
bign bign::pow(const bign& num)const
{
bign result = 1;
for (bign i = 0; i < num; i++)
result = result*(*this);
return result;
}
bign bign::factorial()const
{
bign result = 1;
for (bign i = 1; i <= *this; i++)
result *= i;
return result;
}
void bign::clean()
{
if (len == 0) len++;
while (len > 1 && s[len - 1] == '\0')
len--;
}
//luogu验证,应该差不多,只是乘法太慢t了。
bign bign::Sqrt(const bign& num)const
{
if(*this<0)return -1;
if(*this<=1)return *this;
bign l=0,r=*this,mid;
while(r-l>1)
{
mid=(l+r)/2;
if(num*mid.len-num+1>(*this).len || mid.pow(num)>*this)
r=mid;
else
l=mid;
}
return l;
}
bign::~bign()
{
}
int main()
{
}
只可以进行正整数操作的高精度模板,实测速度一般
#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<string>
#include<iosfwd>
#define ll short
using namespace std;
const ll N=221;
struct bignum
{
ll len,num[N];
bignum()
{
len=0;
memset(num,0,sizeof(num));
}
} one,zero,ans;
inline bignum read()
{
bignum ans;
string s;
cin>>s;
int len=s.size();
for(ll i=0; i<len; i++) ans.num[s.size()-i]=s[i]-48;
ans.len=s.size();
return ans;
}
inline void write(bignum s)
{
for(ll i=s.len; i>=1; i--) putchar(s.num[i]+48);
}
inline void operator ==(bignum &a,ll b)
{
for(; b; b/=10) a.num[++a.len]=b%10;
}
inline bool operator <=(bignum a,bignum b)
{
if(a.len>b.len) return 0;
if(a.len<b.len) return 1;
for(ll i=a.len; i>=1; i--)
{
if(a.num[i]>b.num[i]) return 0;
if(a.num[i]<b.num[i]) return 1;
}
return 1;
}
inline bool operator >(bignum a,bignum b)
{
if(a.len>b.len) return 1;
if(a.len<b.len) return 0;
for(ll i=a.len; i>=1; i--)
{
if(a.num[i]>b.num[i]) return 1;
if(a.num[i]<b.num[i]) return 0;
}
return 0;
}
inline bignum operator +(bignum a,bignum b)
{
bignum c;
c.len=max(a.len,b.len);
for(ll i=1; i<=c.len; i++)
{
c.num[i]+=a.num[i]+b.num[i];
c.num[i+1]+=c.num[i]/10;
c.num[i]%=10;
}
if(c.num[c.len+1]) c.len++;
return c;
}
inline bignum operator -(bignum a,bignum b)
{
bignum c;
c.len=a.len;
for(ll i=1; i<=c.len; i++)
{
c.num[i]=a.num[i]-b.num[i];
if(c.num[i]<0)
{
c.num[i]+=10;
a.num[i+1]--;
}
}
while(c.len>1&&c.num[c.len]==0) c.len--;
return c;
}
inline bignum operator *(bignum a,bignum b)
{
bignum c;
for(ll i=1; i<=a.len; i++)
{
for(ll j=1; j<=b.len; j++)
{
c.num[i+j-1]+=a.num[i]*b.num[j];
c.num[i+j]+=c.num[i+j-1]/10;
c.num[i+j-1]%=10;
}
}
c.len=a.len+b.len;
while(c.len>1&&c.num[c.len]==0) c.len--;
return c;
}
inline bignum operator /(bignum a,ll b)
{
ll sum=0;
bignum c;
for(ll i=a.len; i>=1; i--)
{
sum=sum*10+a.num[i];
c.num[i]=sum/b;
sum%=b;
}
c.len=a.len;
while(c.len>1&&c.num[c.len]==0) c.len--;
return c;
}
int main()
{
}
只可以进行正整数操作的高精度模板, f f t fft fft使用高精度乘法,实测速度巨慢,比2还慢。
//测试之后发现跑得巨慢...
#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<string>
#include<iosfwd>
#define ll long long
using namespace std;
const ll N=20010;
const double pi=acos(-1);
ll m;
struct bignum
{
ll len,num[N];
bignum()
{
len=0;
memset(num,0,sizeof(num));
}
} n,one,zero,ans,c;
inline void clear(bignum &a)
{
memset(a.num,0,sizeof(a.num));
a.len=0;
}
inline bignum read()
{
bignum ans;
string s;
cin>>s;
for(ll i=0; i<s.size(); i++) ans.num[s.size()-i]=s[i]-48;
ans.len=s.size();
return ans;
}
inline void write(bignum s)
{
for(ll i=s.len; i>=1; i--) cout<<s.num[i];
}
inline void operator ==(bignum &a,ll b)
{
for(; b; b/=10) a.num[++a.len]=b%10;
}
inline bool operator <=(bignum a,bignum b)
{
if(a.len>b.len) return 0;
if(a.len<b.len) return 1;
for(ll i=a.len; i>=1; i--)
{
if(a.num[i]>b.num[i]) return 0;
if(a.num[i]<b.num[i]) return 1;
}
return 1;
}
inline bool operator >(bignum a,bignum b)
{
if(a.len>b.len) return 1;
if(a.len<b.len) return 0;
for(ll i=a.len; i>=1; i--)
{
if(a.num[i]>b.num[i]) return 1;
if(a.num[i]<b.num[i]) return 0;
}
return 0;
}
inline bignum operator +(bignum a,bignum b)
{
clear(c);
c.len=max(a.len,b.len);
for(ll i=1; i<=c.len; i++)
{
c.num[i]+=a.num[i]+b.num[i];
c.num[i+1]+=c.num[i]/10;
c.num[i]%=10;
}
if(c.num[c.len+1]) c.len++;
return c;
}
inline bignum operator -(bignum a,bignum b)
{
clear(c);
c.len=a.len;
for(ll i=1; i<=c.len; i++)
{
c.num[i]=a.num[i]-b.num[i];
if(c.num[i]<0)
{
c.num[i]+=10;
a.num[i+1]--;
}
}
while(c.len>1&&c.num[c.len]==0) c.len--;
return c;
}
void FFT(complex<double> *a,ll n,ll op)
{
if(!n) return;
complex<double> a0[n],a1[n];
for(ll i=0; i<n; i++)
{
a0[i]=a[i<<1];
a1[i]=a[i<<1|1];
}
FFT(a0,n>>1,op);
FFT(a1,n>>1,op);
complex<double> W(cos(pi/n),sin(pi/n)*op),w(1,0);
for(ll i=0; i<n; i++,w*=W)
{
a[i]=a0[i]+w*a1[i];
a[i+n]=a0[i]-w*a1[i];
}
}
complex<double> x[N],y[N];
inline bignum operator *(bignum a,bignum b)
{
memset(x,0,sizeof(x));
memset(y,0,sizeof(y));
ll n=a.len-1,m=b.len-1;
for(ll i=0; i<=n; i++) x[i]=a.num[i+1];
for(ll i=0; i<=m; i++) y[i]=b.num[i+1];
for(m+=n,n=1; n<=m; n<<=1);
FFT(x,n>>1,1);
FFT(y,n>>1,1);
for(ll i=0; i<n; i++) x[i]*=y[i];
FFT(x,n>>1,-1);
bignum c;
for(ll i=0; i<=m; i++) c.num[i+1]=(ll)(fabs(x[i].real()/n+0.5));
c.len=m+1;
while(c.len>1&&c.num[c.len]==0) c.len--;
for(ll i=1; i<=c.len; i++)
{
c.num[i+1]+=c.num[i]/10;
c.num[i]%=10;
}
while(c.num[c.len+1])
{
c.len++;
c.num[c.len+1]+=c.num[c.len]/10;
c.num[c.len]%=10;
}
return c;
}
inline bignum operator /(bignum a,ll b)
{
ll sum=0;
clear(c);
for(ll i=a.len; i>=1; i--)
{
sum=sum*10+a.num[i];
c.num[i]=sum/b;
sum%=b;
}
c.len=a.len;
while(c.len>1&&c.num[c.len]==0) c.len--;
return c;
}
inline bool check(bignum a,ll b)
{
bignum ans=one;
for(ll i=1; i<=b; i++)
{
ans=ans*a;
if(ans>n) return 0;
}
return 1;
}
int main()
{
cin>>m;
n=read();
one==1;
zero==0;
bignum l=one,r=n;
while(l<=r)
{
bignum mid=(l+r)/2;
if(check(mid,m))
{
ans=mid;
l=mid+one;
}
else r=mid-one;
}
write(ans);
return 0;
}
跑得超级快的压位高精
#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<complex>
#include<string.h>
#include<math.h>
#include<string>
#include<iosfwd>
#define ll long long
using namespace std;
const ll N=30;
const double pi=acos(-1);
const ll mod=100000000,length=log(mod)/log(10);
struct bignum
{
ll len,num[N];
bignum()
{
len=0;
memset(num,0,sizeof(num));
}
} one,zero,ans,QAQ;
inline bignum read()
{
bignum ans;
string s;
cin>>s;
for(ll r=s.size()-1; r>=0; r-=length)
{
ans.len++;
ll l;
if(r>=length-1) l=r-length+1;
else l=0;
for(ll i=l; i<=r; i++) ans.num[ans.len]=ans.num[ans.len]*10+s[i]-48;
}
return ans;
}
inline void write(bignum s)
{
printf("%lld",s.num[s.len]);
for(ll i=s.len-1; i>=1; i--)
{
for(ll j=mod/10; j>s.num[i]; j/=10) putchar('0');
if(s.num[i]) printf("%lld",s.num[i]);
}
}
inline void operator ==(bignum &a,ll b)
{
for(; b; b/=mod) a.num[++a.len]=b%mod;
}
inline bool operator <=(bignum a,bignum b)
{
if(a.len>b.len) return 0;
if(a.len<b.len) return 1;
for(ll i=a.len; i>=1; i--)
{
if(a.num[i]>b.num[i]) return 0;
if(a.num[i]<b.num[i]) return 1;
}
return 1;
}
inline bool operator >(bignum a,bignum b)
{
if(a.len>b.len) return 1;
if(a.len<b.len) return 0;
for(ll i=a.len; i>=1; i--)
{
if(a.num[i]>b.num[i]) return 1;
if(a.num[i]<b.num[i]) return 0;
}
return 0;
}
inline bignum operator +(bignum a,bignum b)
{
bignum c;
c.len=max(a.len,b.len);
for(ll i=1; i<=c.len; i++)
{
c.num[i]+=a.num[i]+b.num[i];
c.num[i+1]+=c.num[i]/mod;
c.num[i]%=mod;
}
if(c.num[c.len+1]) c.len++;
return c;
}
inline bignum operator -(bignum a,bignum b)
{
bignum c;
c.len=a.len;
for(ll i=1; i<=c.len; i++)
{
c.num[i]=a.num[i]-b.num[i];
if(c.num[i]<0)
{
c.num[i]+=mod;
a.num[i+1]--;
}
}
while(c.len>1&&c.num[c.len]==0) c.len--;
return c;
}
inline bignum operator *(bignum a,bignum b)
{
bignum c;
for(ll i=1; i<=a.len; i++)
{
for(ll j=1; j<=b.len; j++)
{
c.num[i+j-1]+=a.num[i]*b.num[j];
c.num[i+j]+=c.num[i+j-1]/mod;
c.num[i+j-1]%=mod;
}
}
c.len=a.len+b.len;
while(c.len>1&&c.num[c.len]==0) c.len--;
return c;
}
inline bignum operator /(bignum a,ll b)
{
ll sum=0;
bignum c;
for(ll i=a.len; i>=1; i--)
{
sum=sum*mod+a.num[i];
c.num[i]=sum/b;
sum%=b;
}
c.len=a.len;
while(c.len>1&&c.num[c.len]==0) c.len--;
return c;
}
int main()
{
}
模板均来自网络,并略作修改。
模板1 来自 c s d n csdn csdn 用户 H a r r y G u o 2012 HarryGuo2012 HarryGuo2012的博文 https://blog.csdn.net/harryguo2012/article/details/42036829
模板2、3、4来自 l u o g u luogu luogu 用户 x u k u a n xukuan xukuan的题解 https://www.luogu.com.cn/problemnew/solution/P2293?page=2
mounted是挂载vue实例后的钩子函数activated是组件被激活后的钩子函数如果使用keep-alive, 那绝对少不了要使用activated解决数据刷新问题
来自Rapid7公司的安全研究人员Weston Hecker开发出一款成本仅为6美元的工具,但其足以开启酒店房门及攻克销售点系统。相信没人指望酒店的电子锁能挡得住黑客们的入侵——但真正令人惊讶的是,技术人员仅使用一款成本为6美元的工具就完成了这一目标。来自Rapid7公司的安全研究人员Weston Hecker打造出一款成本极低的小型设备,可用于开启...
好想好想学习片总那样弄个NGA客户端..必学解析XML通过Pull解析XML主要知道以下几个要点:1.Pull解析XML是通过一层一层取值的,从效率上比其他两种要好,也相当容易理解。比如说下面这段代码 斗门区 31Pull用从头标签到尾标签来一个一个遍历取值其中 属于头标签 2.XML中的值有两种名称 类似于HTML这里的key 属于attr
Python 常用模块总结1、random2、math3、os4、os.path5、sys6、hashlib7、hmac8、time9、datetime10、calendar11、UUID常见的模块randommathdatetimetimeosos.pathsyshashlibhmac… …模块的导入>>> import os>>> import hashlib [as hash]>>> import http.ser
All problems in computer science can be solved by another level of indirection .为什么要分...
一般发生在更新jdk版本之后,执行java程序报错:Error:Cannot run program "C:\Program Files\Java\jdk1.8.0_20\bin\java.exe" (in directory "C:\Users\xxx\AppData\Local\JetBrains\IntelliJIdea2020.1\compile-server"): CreateProcess error=2, 系统找不到指定的文件。解决:第一步,按图索骥啊!1)查看“C:\Prog
导航:网站首页 >用汇编语言实现如下程序:进行自然数相加(1+2+3... 汇编语言 编写程序实现自然数1到100的累加。要求用...用汇编语言实现如下程序:进行自然数相加(1+2+3... 汇编语言 编写程序实现自然数1到100的累加。要求用...相关问题:匿名网友:@N的极限是92681。以下程序将其赋值100000时,它返回的为92681。当你给定的@N在92681以内时,...
(本文年代久远,请谨慎阅读)修改前<select style="height:25px;width:160px;"> <option onclick="xx('err')" selected>选择查找方式</option> <option onclick="xx('low')" >简单查询</...
Agilent U2751A USB Modular Switch MatrixU2751A USB模拟开关矩阵为自动化测试提供了一个高质量、低消耗的开关解决方案。可作为一个单独的元件也可作为U2781A USB的模块单元。U2751A 是一个紧凑的4*8矩阵,两线的模拟矩阵开关,它可以通过USB接口在Agilent Measurement Manager软件上进行远程控制。也可以用支
find命令之exec
mysql timestamp字段出现'0000-00-00 00:00:00'值导致报错解决方法及原因分析