二叉树遍历_递归算法底层的实现使用的是什么存储结构-程序员宅基地

技术标签: 算法  

二叉树的四种遍历算法
冰河世纪20 2019-03-12 15:46:06 22461 收藏 30
展开

本文转自:http://data.biancheng.net/view/194.html
二叉树

简单地理解,满足以下两个条件的树就是二叉树:

本身是有序树;
树中包含的各个节点的度不能超过 2,即只能是 0、1 或者 2;

二叉树的性质

经过前人的总结,二叉树具有以下几个性质:

二叉树中,第 i 层最多有 2i-1 个结点。
如果二叉树的深度为 K,那么此二叉树最多有 2K-1 个结点。
二叉树中,终端结点数(叶子结点数)为 n0,度为 2 的结点数为 n2,则 n0=n2+1。

性质 3 的计算方法为:对于一个二叉树来说,除了度为 0 的叶子结点和度为 2 的结点,剩下的就是度为 1 的结点(设为 n1),那么总结点 n=n0+n1+n2。
同时,对于每一个结点来说都是由其父结点分支表示的,假设树中分枝数为 B,那么总结点数 n=B+1。而分枝数是可以通过 n1 和 n2 表示的,即 B=n1+2n2。所以,n 用另外一种方式表示为 n=n1+2n2+1。
两种方式得到的 n 值组成一个方程组,就可以得出 n0=n2+1。

满二叉树
如果二叉树中除了叶子结点,每个结点的度都为 2,则此二叉树称为满二叉树。图1即为满二叉树。

下图是本节二叉树用例图1:
在这里插入图片描述
满二叉树除了满足普通二叉树的性质,还具有以下性质:

满二叉树中第 i 层的节点数为 2n-1 个。
深度为 k 的满二叉树必有 2k-1 个节点 ,叶子数为 2k-1。
满二叉树中不存在度为 1 的节点,每一个分支点中都两棵深度相同的子树,且叶子节点都在最底层。
具有 n 个节点的满二叉树的深度为 log2(n+1)。

完全二叉树
如果二叉树中除去最后一层节点为满二叉树,且最后一层的结点依次从左到右分布,则此二叉树被称为完全二叉树。

在这里插入图片描述
如图 a) 所示是一棵完全二叉树,图 b) 由于最后一层的节点没有按照从左向右分布,因此只能算作是普通的二叉树。

完全二叉树除了具有普通二叉树的性质,它自身也具有一些独特的性质,比如说,n 个结点的完全二叉树的深度为 ⌊log2n⌋+1。

⌊log2n

log2​n⌋ 表示取小于 log2nlog2​n 的最大整数。例如,⌊log24log2​4⌋ = 2,而 ⌊log25

log2​5⌋ 结果也是 2。

对于任意一个完全二叉树来说,如果将含有的结点按照层次从左到右依次标号(如图 3a)),对于任意一个结点 i ,完全二叉树还有以下几个结论成立:

当 i>1 时,父亲结点为结点 [i/2] 。(i=1 时,表示的是根结点,无父亲结点)
如果 2i>n(总结点的个数) ,则结点 i 肯定没有左孩子(为叶子结点);否则其左孩子是结点 2i 。
如果 2i+1>n ,则结点 i 肯定没有右孩子;否则右孩子是结点 2i+1 。

二叉树的顺序存储结构

二叉树的存储结构有两种,分别为顺序存储和链式存储。本节先介绍二叉树的顺序存储结构。

二叉树的顺序存储,指的是使用顺序表(数组)存储二叉树。需要注意的是,顺序存储只适用于完全二叉树。换句话说,只有完全二叉树才可以使用顺序表存储。因此,如果我们想顺序存储普通二叉树,需要提前将普通二叉树转化为完全二叉树。

有读者会说,满二叉树也可以使用顺序存储。要知道,满二叉树也是完全二叉树,因为它满足完全二叉树的所有特征。

普通二叉树转完全二叉树的方法很简单,只需给二叉树额外添加一些节点,将其"拼凑"成完全二叉树即可。如下图所示:
在这里插入图片描述
左侧是普通二叉树,右侧是转化后的完全(满)二叉树。解决了二叉树的转化问题,接下来学习如何顺序存储完全(满)二叉树。

完全二叉树的顺序存储,仅需从根节点开始,按照层次依次将树中节点存储到数组即可。
二叉树的链式存储结构

在这里插入图片描述
如上图所示,此为一棵普通的二叉树,若将其采用链式存储,则只需从树的根节点开始,将各个节点及其左右孩子使用链表存储即可。因此,上图对应的链式存储结构如下图所示:
在这里插入图片描述
由图可知,采用链式存储二叉树时,其节点结构由 3 部分构成(如下图所示):

指向左孩子节点的指针(Lchild);
节点存储的数据(data);
指向右孩子节点的指针(Rchild);
在这里插入图片描述
表示该节点结构的 C 语言代码为:

typedef struct BiTNode{
TElemType data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
struct BiTNode *parent;
}BiTNode,*BiTree;

1
2
3
4
5

链式存储结构对应的 C 语言代码为:

#include <stdio.h>
#include <stdlib.h>
#define TElemType int
typedef struct BiTNode{
TElemType data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
void CreateBiTree(BiTree *T){
T=(BiTNode)malloc(sizeof(BiTNode));
(*T)->data=1;
(T)->lchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->lchild->data=2;
(T)->rchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->rchild->data=3;
(*T)->rchild->lchild=NULL;
(*T)->rchild->rchild=NULL;
(T)->lchild->lchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->lchild->lchild->data=4;
(*T)->lchild->rchild=NULL;
(*T)->lchild->lchild->lchild=NULL;
(*T)->lchild->lchild->rchild=NULL;
}
int main() {
BiTree Tree;
CreateBiTree(&Tree);
printf("%d",Tree->lchild->lchild->data);
return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

其实,二叉树的链式存储结构远不止上图所示的这一种。例如,在某些实际场景中,可能会做 “查找某节点的父节点” 的操作,这时可以在节点结构中再添加一个指针域,用于各个节点指向其父亲节点,如下图所示:
在这里插入图片描述

这样的链表结构,通常称为三叉链表。

利用上图所示的三叉链表,我们可以很轻松地找到各节点的父节点。因此,在解决实际问题时,用合适的链表结构存储二叉树,可以起到事半功倍的效果。
二叉树先序遍历

二叉树先序遍历的实现思想是:

访问根节点;
访问当前节点的左子树;
若当前节点无左子树,则访问当前节点的右子树;

以图 1 为例,采用先序遍历的思想遍历该二叉树的过程为:

访问该二叉树的根节点,找到 1;
访问节点 1 的左子树,找到节点 2;
访问节点 2 的左子树,找到节点 4;
由于访问节点 4 左子树失败,且也没有右子树,因此以节点 4 为根节点的子树遍历完成。但节点 2 还没有遍历其右子树,因此现在开始遍历,即访问节点 5;
由于节点 5 无左右子树,因此节点 5 遍历完成,并且由此以节点 2 为根节点的子树也遍历完成。现在回到节点 1,并开始遍历该节点的右子树,即访问节点 3;
访问节点 3 左子树,找到节点 6;
由于节点 6 无左右子树,因此节点 6 遍历完成,回到节点 3 并遍历其右子树,找到节点 7;
节点 7 无左右子树,因此以节点 3 为根节点的子树遍历完成,同时回归节点 1。由于节点 1 的左右子树全部遍历完成,因此整个二叉树遍历完成;

因此,图 1 中二叉树采用先序遍历得到的序列为:

1 2 4 5 3 6 7

递归实现

二叉树的先序遍历采用的是递归的思想,因此可以递归实现,其 C 语言实现代码为:

#include <stdio.h>
#include <string.h>
#define TElemType int
//构造结点的结构体
typedef struct BiTNode{
TElemType data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
//初始化树的函数
void CreateBiTree(BiTree *T){
T=(BiTNode)malloc(sizeof(BiTNode));
(*T)->data=1;
(T)->lchild=(BiTNode)malloc(sizeof(BiTNode));
(T)->rchild=(BiTNode)malloc(sizeof(BiTNode));

(*T)->lchild->data=2;
(*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild->data=5;
(*T)->lchild->rchild->lchild=NULL;
(*T)->lchild->rchild->rchild=NULL;
(*T)->rchild->data=3;
(*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->lchild->data=6;
(*T)->rchild->lchild->lchild=NULL;
(*T)->rchild->lchild->rchild=NULL;
(*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->rchild->data=7;
(*T)->rchild->rchild->lchild=NULL;
(*T)->rchild->rchild->rchild=NULL;
(*T)->lchild->lchild->data=4;
(*T)->lchild->lchild->lchild=NULL;
(*T)->lchild->lchild->rchild=NULL;

}

//模拟操作结点元素的函数,输出结点本身的数值
void displayElem(BiTNode* elem){
printf("%d ",elem->data);
}
//先序遍历
void PreOrderTraverse(BiTree T){
if (T) {
displayElem(T);//调用操作结点数据的函数方法
PreOrderTraverse(T->lchild);//访问该结点的左孩子
PreOrderTraverse(T->rchild);//访问该结点的右孩子
}
//如果结点为空,返回上一层
return;
}
int main() {
BiTree Tree;
CreateBiTree(&Tree);
printf(“先序遍历: \n”);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

非递归实现

而递归的底层实现依靠的是栈存储结构,因此,二叉树的先序遍历既可以直接采用递归思想实现,也可以使用栈的存储结构模拟递归的思想实现,其 C 语言实现代码为:

#include <stdio.h>
#include <string.h>
#define TElemType int
int top=-1;//top变量时刻表示栈顶元素所在位置
//构造结点的结构体
typedef struct BiTNode{
TElemType data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
//初始化树的函数
void CreateBiTree(BiTree *T){
T=(BiTNode)malloc(sizeof(BiTNode));
(*T)->data=1;
(T)->lchild=(BiTNode)malloc(sizeof(BiTNode));
(T)->rchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->lchild->data=2;
(T)->lchild->lchild=(BiTNode)malloc(sizeof(BiTNode));
(T)->lchild->rchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->lchild->rchild->data=5;
(*T)->lchild->rchild->lchild=NULL;
(*T)->lchild->rchild->rchild=NULL;
(*T)->rchild->data=3;
(T)->rchild->lchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->rchild->lchild->data=6;
(*T)->rchild->lchild->lchild=NULL;
(*T)->rchild->lchild->rchild=NULL;
(T)->rchild->rchild=(BiTNode)malloc(sizeof(BiTNode));
(T)->rchild->rchild->data=7;
(T)->rchild->rchild->lchild=NULL;
(T)->rchild->rchild->rchild=NULL;
(T)->lchild->lchild->data=4;
(T)->lchild->lchild->lchild=NULL;
(T)->lchild->lchild->rchild=NULL;
}
//前序遍历使用的进栈函数
void push(BiTNode
a,BiTNode
elem){
a[++top]=elem;
}
//弹栈函数
void pop( ){
if (top==-1) {
return ;
}
top–;
}
//模拟操作结点元素的函数,输出结点本身的数值
void displayElem(BiTNode
elem){
printf("%d ",elem->data);
}
//拿到栈顶元素
BiTNode
getTop(BiTNode**a){
return a[top];
}
//先序遍历非递归算法
void PreOrderTraverse(BiTree Tree){
BiTNode
a[20];//定义一个顺序栈
BiTNode * p;//临时指针
push(a, Tree);//根结点进栈
while (top!=-1) {
p=getTop(a);//取栈顶元素
pop();//弹栈
while § {
displayElem§;//调用结点的操作函数
//如果该结点有右孩子,右孩子进栈
if (p->rchild) {
push(a,p->rchild);
}
p=p->lchild;//一直指向根结点最后一个左孩子
}
}
}
int main(){
BiTree Tree;
CreateBiTree(&Tree);
printf(“先序遍历: \n”);
PreOrderTraverse(Tree);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

二叉树中序遍历

二叉树中序遍历的实现思想是:

访问当前节点的左子树;
访问根节点;
访问当前节点的右子树;

以图 1 为例,采用中序遍历的思想遍历该二叉树的过程为:

访问该二叉树的根节点,找到 1;
遍历节点 1 的左子树,找到节点 2;
遍历节点 2 的左子树,找到节点 4;
由于节点 4 无左孩子,因此找到节点 4,并遍历节点 4 的右子树;
由于节点 4 无右子树,因此节点 2 的左子树遍历完成,访问节点 2;
遍历节点 2 的右子树,找到节点 5;
由于节点 5 无左子树,因此访问节点 5 ,又因为节点 5 没有右子树,因此节点 1 的左子树遍历完成,访问节点 1 ,并遍历节点 1 的右子树,找到节点 3;
遍历节点 3 的左子树,找到节点 6;
由于节点 6 无左子树,因此访问节点 6,又因为该节点无右子树,因此节点 3 的左子树遍历完成,开始访问节点 3 ,并遍历节点 3 的右子树,找到节点 7;
由于节点 7 无左子树,因此访问节点 7,又因为该节点无右子树,因此节点 1 的右子树遍历完成,即整棵树遍历完成;

因此,图 1 中二叉树采用中序遍历得到的序列为:

4 2 5 1 6 3 7

递归实现

二叉树的中序遍历采用的是递归的思想,因此可以递归实现,其 C 语言实现代码为:

#include <stdio.h>
#include <string.h>
#define TElemType int
//构造结点的结构体
typedef struct BiTNode{
TElemType data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
//初始化树的函数
void CreateBiTree(BiTree *T){
T=(BiTNode)malloc(sizeof(BiTNode));
(*T)->data=1;
(T)->lchild=(BiTNode)malloc(sizeof(BiTNode));
(T)->rchild=(BiTNode)malloc(sizeof(BiTNode));

(*T)->lchild->data=2;
(*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild->data=5;
(*T)->lchild->rchild->lchild=NULL;
(*T)->lchild->rchild->rchild=NULL;
(*T)->rchild->data=3;
(*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->lchild->data=6;
(*T)->rchild->lchild->lchild=NULL;
(*T)->rchild->lchild->rchild=NULL;
(*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->rchild->data=7;
(*T)->rchild->rchild->lchild=NULL;
(*T)->rchild->rchild->rchild=NULL;
(*T)->lchild->lchild->data=4;
(*T)->lchild->lchild->lchild=NULL;
(*T)->lchild->lchild->rchild=NULL;

}

//模拟操作结点元素的函数,输出结点本身的数值
void displayElem(BiTNode* elem){
printf("%d ",elem->data);
}
//中序遍历
void INOrderTraverse(BiTree T){
if (T) {
INOrderTraverse(T->lchild);//遍历左孩子
displayElem(T);//调用操作结点数据的函数方法
INOrderTraverse(T->rchild);//遍历右孩子
}
//如果结点为空,返回上一层
return;
}

int main() {
BiTree Tree;
CreateBiTree(&Tree);
printf(“中序遍历算法: \n”);
INOrderTraverse(Tree);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

非递归实现

而递归的底层实现依靠的是栈存储结构,因此,二叉树的先序遍历既可以直接采用递归思想实现,也可以使用栈的存储结构模拟递归的思想实现。

中序遍历的非递归方式实现思想是:从根结点开始,遍历左孩子同时压栈,当遍历结束,说明当前遍历的结点没有左孩子,从栈中取出来调用操作函数,然后访问该结点的右孩子,继续以上重复性的操作。

除此之外,还有另一种实现思想:中序遍历过程中,只需将每个结点的左子树压栈即可,右子树不需要压栈。当结点的左子树遍历完成后,只需要以栈顶结点的右孩子为根结点,继续循环遍历即可。

两种非递归方法实现二叉树中序遍历的代码实现为:

#include <stdio.h>
#include <string.h>
#define TElemType int
int top=-1;//top变量时刻表示栈顶元素所在位置
//构造结点的结构体
typedef struct BiTNode{
TElemType data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
//初始化树的函数
void CreateBiTree(BiTree *T){
T=(BiTNode)malloc(sizeof(BiTNode));
(*T)->data=1;
(T)->lchild=(BiTNode)malloc(sizeof(BiTNode));
(T)->rchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->lchild->data=2;
(T)->lchild->lchild=(BiTNode)malloc(sizeof(BiTNode));
(T)->lchild->rchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->lchild->rchild->data=5;
(*T)->lchild->rchild->lchild=NULL;
(*T)->lchild->rchild->rchild=NULL;
(*T)->rchild->data=3;
(T)->rchild->lchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->rchild->lchild->data=6;
(*T)->rchild->lchild->lchild=NULL;
(T)->rchild->lchild->rchild=NULL;
(T)->rchild->rchild=(BiTNode)malloc(sizeof(BiTNode));
(T)->rchild->rchild->data=7;
(T)->rchild->rchild->lchild=NULL;
(T)->rchild->rchild->rchild=NULL;
(T)->lchild->lchild->data=4;
(T)->lchild->lchild->lchild=NULL;
(T)->lchild->lchild->rchild=NULL;
}
//前序和中序遍历使用的进栈函数
void push(BiTNode
a,BiTNode
elem){
a[++top]=elem;
}
//弹栈函数
void pop( ){
if (top==-1) {
return ;
}
top–;
}
//模拟操作结点元素的函数,输出结点本身的数值
void displayElem(BiTNode
elem){
printf("%d ",elem->data);
}
//拿到栈顶元素
BiTNode
getTop(BiTNode**a){
return a[top];
}
//中序遍历非递归算法
void InOrderTraverse1(BiTree Tree){
BiTNode
a[20];//定义一个顺序栈
BiTNode * p;//临时指针
push(a, Tree);//根结点进栈
while (top!=-1) {//top!=-1说明栈内不为空,程序继续运行
while ((p=getTop(a)) &&p){//取栈顶元素,且不能为NULL
push(a, p->lchild);//将该结点的左孩子进栈,如果没有左孩子,NULL进栈
}
pop();//跳出循环,栈顶元素肯定为NULL,将NULL弹栈
if (top!=-1) {
p=getTop(a);//取栈顶元素
pop();//栈顶元素弹栈
displayElem§;
push(a, p->rchild);//将p指向的结点的右孩子进栈
}
}
}
//中序遍历实现的另一种方法
void InOrderTraverse2(BiTree Tree){
BiTNode
a[20];//定义一个顺序栈
BiTNode * p;//临时指针
p=Tree;
//当p为NULL或者栈为空时,表明树遍历完成
while (p || top!=-1) {
//如果p不为NULL,将其压栈并遍历其左子树
if § {
push(a, p);
p=p->lchild;
}
//如果p==NULL,表明左子树遍历完成,需要遍历上一层结点的右子树
else{
p=getTop(a);
pop();
displayElem§;
p=p->rchild;
}
}
}
int main(){
BiTree Tree;
CreateBiTree(&Tree);
printf("\n中序遍历算法1: \n");
InOrderTraverse1(Tree);
printf("\n中序遍历算法2: \n");
InOrderTraverse2(Tree);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

二叉树后序遍历

二叉树后序遍历的实现思想是:从根节点出发,依次遍历各节点的左右子树,直到当前节点左右子树遍历完成后,才访问该节点元素。

如图 1 中,对此二叉树进行后序遍历的操作过程为:

从根节点 1 开始,遍历该节点的左子树(以节点 2 为根节点);
遍历节点 2 的左子树(以节点 4 为根节点);
由于节点 4 既没有左子树,也没有右子树,此时访问该节点中的元素 4,并回退到节点 2 ,遍历节点 2 的右子树(以 5 为根节点);
由于节点 5 无左右子树,因此可以访问节点 5 ,并且此时节点 2 的左右子树也遍历完成,因此也可以访问节点 2;
此时回退到节点 1 ,开始遍历节点 1 的右子树(以节点 3 为根节点);
遍历节点 3 的左子树(以节点 6 为根节点);
由于节点 6 无左右子树,因此访问节点 6,并回退到节点 3,开始遍历节点 3 的右子树(以节点 7 为根节点);
由于节点 7 无左右子树,因此访问节点 7,并且节点 3 的左右子树也遍历完成,可以访问节点 3;
节点 1 的左右子树也遍历完成,可以访问节点 1;
到此,整棵树的遍历结束。

由此,对图 1 中二叉树进行后序遍历的结果为:

4 5 2 6 7 3 1

递归实现

后序遍历的递归实现代码为:

#include <stdio.h>
#include <string.h>
#define TElemType int
//构造结点的结构体
typedef struct BiTNode{
TElemType data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
//初始化树的函数
void CreateBiTree(BiTree *T){
T=(BiTNode)malloc(sizeof(BiTNode));
(*T)->data=1;
(T)->lchild=(BiTNode)malloc(sizeof(BiTNode));
(T)->rchild=(BiTNode)malloc(sizeof(BiTNode));

(*T)->lchild->data=2;
(*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild->data=5;
(*T)->lchild->rchild->lchild=NULL;
(*T)->lchild->rchild->rchild=NULL;
(*T)->rchild->data=3;
(*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->lchild->data=6;
(*T)->rchild->lchild->lchild=NULL;
(*T)->rchild->lchild->rchild=NULL;
(*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->rchild->data=7;
(*T)->rchild->rchild->lchild=NULL;
(*T)->rchild->rchild->rchild=NULL;
(*T)->lchild->lchild->data=4;
(*T)->lchild->lchild->lchild=NULL;
(*T)->lchild->lchild->rchild=NULL;

}

//模拟操作结点元素的函数,输出结点本身的数值
void displayElem(BiTNode* elem){
printf("%d ",elem->data);
}
//后序遍历
void PostOrderTraverse(BiTree T){
if (T) {
PostOrderTraverse(T->lchild);//遍历左孩子
PostOrderTraverse(T->rchild);//遍历右孩子
displayElem(T);//调用操作结点数据的函数方法
}
//如果结点为空,返回上一层
return;
}
int main() {
BiTree Tree;
CreateBiTree(&Tree);
printf(“后序遍历: \n”);
PostOrderTraverse(Tree);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

非递归实现

递归算法底层的实现使用的是栈存储结构,所以可以直接使用栈写出相应的非递归算法。

后序遍历是在遍历完当前结点的左右孩子之后,才调用操作函数,所以需要在操作结点进栈时,为每个结点配备一个标志位。当遍历该结点的左孩子时,设置当前结点的标志位为 0,进栈;当要遍历该结点的右孩子时,设置当前结点的标志位为 1,进栈。

这样,当遍历完成,该结点弹栈时,查看该结点的标志位的值:如果是 0,表示该结点的右孩子还没有遍历;反之如果是 1,说明该结点的左右孩子都遍历完成,可以调用操作函数。

完整实现代码为:

#include <stdio.h>
#include <string.h>
#define TElemType int
int top=-1;//top变量时刻表示栈顶元素所在位置
//构造结点的结构体
typedef struct BiTNode{
TElemType data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
//初始化树的函数
void CreateBiTree(BiTree *T){
T=(BiTNode)malloc(sizeof(BiTNode));
(*T)->data=1;
(T)->lchild=(BiTNode)malloc(sizeof(BiTNode));
(T)->rchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->lchild->data=2;
(T)->lchild->lchild=(BiTNode)malloc(sizeof(BiTNode));
(T)->lchild->rchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->lchild->rchild->data=5;
(*T)->lchild->rchild->lchild=NULL;
(*T)->lchild->rchild->rchild=NULL;
(*T)->rchild->data=3;
(T)->rchild->lchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->rchild->lchild->data=6;
(*T)->rchild->lchild->lchild=NULL;
(*T)->rchild->lchild->rchild=NULL;
(T)->rchild->rchild=(BiTNode)malloc(sizeof(BiTNode));
(*T)->rchild->rchild->data=7;
(*T)->rchild->rchild->lchild=NULL;
(*T)->rchild->rchild->rchild=NULL;
(*T)->lchild->lchild->data=4;
(*T)->lchild->lchild->lchild=NULL;
(T)->lchild->lchild->rchild=NULL;
}
//弹栈函数
void pop( ){
if (top==-1) {
return ;
}
top–;
}
//模拟操作结点元素的函数,输出结点本身的数值
void displayElem(BiTNode
elem){
printf("%d ",elem->data);
}

//后序遍历非递归算法
typedef struct SNode{
BiTree p;
int tag;
}SNode;
//后序遍历使用的进栈函数
void postpush(SNode *a,SNode sdata){
a[++top]=sdata;
}
//后序遍历函数
void PostOrderTraverse(BiTree Tree){
SNode a[20];//定义一个顺序栈
BiTNode * p;//临时指针
int tag;
SNode sdata;
p=Tree;
while (p||top!=-1) {
while § {
//为该结点入栈做准备
sdata.p=p;
sdata.tag=0;//由于遍历是左孩子,设置标志位为0
postpush(a, sdata);//压栈
p=p->lchild;//以该结点为根结点,遍历左孩子
}
sdata=a[top];//取栈顶元素
pop();//栈顶元素弹栈
p=sdata.p;
tag=sdata.tag;
//如果tag0,说明该结点还没有遍历它的右孩子
if (tag
0) {
sdata.p=p;
sdata.tag=1;
postpush(a, sdata);//更改该结点的标志位,重新压栈
p=p->rchild;//以该结点的右孩子为根结点,重复循环
}
//如果取出来的栈顶元素的tag==1,说明此结点左右子树都遍历完了,可以调用操作函数了
else{
displayElem§;
p=NULL;
}
}
}
int main(){
BiTree Tree;
CreateBiTree(&Tree);
printf(“后序遍历: \n”);
PostOrderTraverse(Tree);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

二叉树层次遍历

层次遍历方式:按照二叉树中的层次从左到右依次遍历每层中的结点。具体的实现思路是:通过使用队列的数据结构,从树的根结点开始,依次将其左孩子和右孩子入队。而后每次队列中一个结点出队,都将其左孩子和右孩子入队,直到树中所有结点都出队,出队结点的先后顺序就是层次遍历的最终结果。

层次遍历的实现过程
例如,层次遍历图 1 中的二叉树:

首先,根结点 1 入队;
根结点 1 出队,出队的同时,将左孩子 2 和右孩子 3 分别入队;
队头结点 2 出队,出队的同时,将结点 2 的左孩子 4 和右孩子 5 依次入队;
队头结点 3 出队,出队的同时,将结点 3 的左孩子 6 和右孩子 7 依次入队;
不断地循环,直至队列内为空。

实现代码

#include <stdio.h>
#define TElemType int
//初始化队头和队尾指针开始时都为0
int front=0,rear=0;

typedef struct BiTNode{
TElemType data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
void CreateBiTree(BiTree *T){
T=(BiTNode)malloc(sizeof(BiTNode));
(*T)->data=1;
(T)->lchild=(BiTNode)malloc(sizeof(BiTNode));
(T)->rchild=(BiTNode)malloc(sizeof(BiTNode));

(*T)->lchild->data=2;
(*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild->data=5;
(*T)->lchild->rchild->lchild=NULL;
(*T)->lchild->rchild->rchild=NULL;

(*T)->rchild->data=3;
(*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->lchild->data=6;
(*T)->rchild->lchild->lchild=NULL;
(*T)->rchild->lchild->rchild=NULL;

(*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->rchild->data=7;
(*T)->rchild->rchild->lchild=NULL;
(*T)->rchild->rchild->rchild=NULL;

(*T)->lchild->lchild->data=4;
(*T)->lchild->lchild->lchild=NULL;
(*T)->lchild->lchild->rchild=NULL;

}
//入队函数
void EnQueue(BiTree a,BiTree node){
a[rear++]=node;
}
//出队函数
BiTNode
DeQueue(BiTNode** a){
return a[front++];
}
//输出函数
void displayNode(BiTree node){
printf("%d ",node->data);
}
int main() {
BiTree tree;
//初始化二叉树
CreateBiTree(&tree);
BiTNode * p;
//采用顺序队列,初始化创建队列数组
BiTree a[20];
//根结点入队
EnQueue(a, tree);
//当队头和队尾相等时,表示队列为空
while(front<rear) {
//队头结点出队
p=DeQueue(a);
displayNode§;
//将队头结点的左右孩子依次入队
if (p->lchild!=NULL) {
EnQueue(a, p->lchild);
}
if (p->rchild!=NULL) {
EnQueue(a, p->rchild);
}
}
return 0;
}

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Nail_CN/article/details/106324254

智能推荐

Docker 快速上手学习入门教程_docker菜鸟教程-程序员宅基地

文章浏览阅读2.5w次,点赞6次,收藏50次。官方解释是,docker 容器是机器上的沙盒进程,它与主机上的所有其他进程隔离。所以容器只是操作系统中被隔离开来的一个进程,所谓的容器化,其实也只是对操作系统进行欺骗的一种语法糖。_docker菜鸟教程

电脑技巧:Windows系统原版纯净软件必备的两个网站_msdn我告诉你-程序员宅基地

文章浏览阅读5.7k次,点赞3次,收藏14次。该如何避免的,今天小编给大家推荐两个下载Windows系统官方软件的资源网站,可以杜绝软件捆绑等行为。该站提供了丰富的Windows官方技术资源,比较重要的有MSDN技术资源文档库、官方工具和资源、应用程序、开发人员工具(Visual Studio 、SQLServer等等)、系统镜像、设计人员工具等。总的来说,这两个都是非常优秀的Windows系统镜像资源站,提供了丰富的Windows系统镜像资源,并且保证了资源的纯净和安全性,有需要的朋友可以去了解一下。这个非常实用的资源网站的创建者是国内的一个网友。_msdn我告诉你

vue2封装对话框el-dialog组件_<el-dialog 封装成组件 vue2-程序员宅基地

文章浏览阅读1.2k次。vue2封装对话框el-dialog组件_

MFC 文本框换行_c++ mfc同一框内输入二行怎么换行-程序员宅基地

文章浏览阅读4.7k次,点赞5次,收藏6次。MFC 文本框换行 标签: it mfc 文本框1.将Multiline属性设置为True2.换行是使用"\r\n" (宽字符串为L"\r\n")3.如果需要编辑并且按Enter键换行,还要将 Want Return 设置为 True4.如果需要垂直滚动条的话将Vertical Scroll属性设置为True,需要水平滚动条的话将Horizontal Scroll属性设_c++ mfc同一框内输入二行怎么换行

redis-desktop-manager无法连接redis-server的解决方法_redis-server doesn't support auth command or ismis-程序员宅基地

文章浏览阅读832次。检查Linux是否是否开启所需端口,默认为6379,若未打开,将其开启:以root用户执行iptables -I INPUT -p tcp --dport 6379 -j ACCEPT如果还是未能解决,修改redis.conf,修改主机地址:bind 192.168.85.**;然后使用该配置文件,重新启动Redis服务./redis-server redis.conf..._redis-server doesn't support auth command or ismisconfigured. try

实验四 数据选择器及其应用-程序员宅基地

文章浏览阅读4.9k次。济大数电实验报告_数据选择器及其应用

随便推点

灰色预测模型matlab_MATLAB实战|基于灰色预测河南省社会消费品零售总额预测-程序员宅基地

文章浏览阅读236次。1研究内容消费在生产中占据十分重要的地位,是生产的最终目的和动力,是保持省内经济稳定快速发展的核心要素。预测河南省社会消费品零售总额,是进行宏观经济调控和消费体制改变创新的基础,是河南省内人民对美好的全面和谐社会的追求的要求,保持河南省经济稳定和可持续发展具有重要意义。本文建立灰色预测模型,利用MATLAB软件,预测出2019年~2023年河南省社会消费品零售总额预测值分别为21881...._灰色预测模型用什么软件

log4qt-程序员宅基地

文章浏览阅读1.2k次。12.4-在Qt中使用Log4Qt输出Log文件,看这一篇就足够了一、为啥要使用第三方Log库,而不用平台自带的Log库二、Log4j系列库的功能介绍与基本概念三、Log4Qt库的基本介绍四、将Log4qt组装成为一个单独模块五、使用配置文件的方式配置Log4Qt六、使用代码的方式配置Log4Qt七、在Qt工程中引入Log4Qt库模块的方法八、获取示例中的源代码一、为啥要使用第三方Log库,而不用平台自带的Log库首先要说明的是,在平时开发和调试中开发平台自带的“打印输出”已经足够了。但_log4qt

100种思维模型之全局观思维模型-67_计算机中对于全局观的-程序员宅基地

文章浏览阅读786次。全局观思维模型,一个教我们由点到线,由线到面,再由面到体,不断的放大格局去思考问题的思维模型。_计算机中对于全局观的

线程间控制之CountDownLatch和CyclicBarrier使用介绍_countdownluach于cyclicbarrier的用法-程序员宅基地

文章浏览阅读330次。一、CountDownLatch介绍CountDownLatch采用减法计算;是一个同步辅助工具类和CyclicBarrier类功能类似,允许一个或多个线程等待,直到在其他线程中执行的一组操作完成。二、CountDownLatch俩种应用场景: 场景一:所有线程在等待开始信号(startSignal.await()),主流程发出开始信号通知,既执行startSignal.countDown()方法后;所有线程才开始执行;每个线程执行完发出做完信号,既执行do..._countdownluach于cyclicbarrier的用法

自动化监控系统Prometheus&Grafana_-自动化监控系统prometheus&grafana实战-程序员宅基地

文章浏览阅读508次。Prometheus 算是一个全能型选手,原生支持容器监控,当然监控传统应用也不是吃干饭的,所以就是容器和非容器他都支持,所有的监控系统都具备这个流程,_-自动化监控系统prometheus&grafana实战

React 组件封装之 Search 搜索_react search-程序员宅基地

文章浏览阅读4.7k次。输入关键字,可以通过键盘的搜索按钮完成搜索功能。_react search