技术标签: filter codec 图像处理 byte processing 存储 数据结构
小知识:RGB与YUV----摘自《DirectShow实务精选》 作者:陆其明 计 算机彩色显示器显示色彩的原理与彩色电视机一样,都是采用R(Red)、G(Green)、B(Blue)相加混色的原理:通过发射出三种不同强度的电子 束,使屏幕内侧覆盖的红、绿、蓝磷光材料发光而产生色彩。这种色彩的表示方法称为RGB色彩空间表示(它也是多媒体计算机技术中用得最多的一种色彩空间表 示方法)。 根据三基色原理,任意一种色光F都可以用不同分量的R、G、B三色相加混合而成。/ T/ n+ c: U; o5 d- O F = r [ R ] + g [ G ] + b [ B ] 其中,r、g、b分别为三基色参与混合的系数。当三基色分量都为0(最弱)时混合为黑色光;而当三基色分量都为k(最强)时混合为白色光。调整r、g、b三个系数的值,可以混合出介于黑色光和白色光之间的各种各样的色光。 那 么YUV又从何而来呢?在现代彩色电视系统中,通常采用三管彩色摄像机或彩色CCD摄像机进行摄像,然后把摄得的彩色图像信号经分色、分别放大校正后得到 RGB,再经过矩阵变换电路得到亮度信号Y和两个色差信号R-Y(即U)、B-Y(即V),最后发送端将亮度和色差三个信号分别进行编码,用同一信道发送 出去。这种色彩的表示方法就是所谓的YUV色彩空间表示。: u% m. g3 b2 ]$ F$ T% r9 j 采用YUV色彩空间的重要性是它的亮度信号Y和色度信号U、V是分离的。如果只有Y信号分量而没有U、V分量,那么这样表示的图像就是黑白灰度图像。彩色电视采用YUV空间正是为了用亮度信号Y解决彩色电视机与黑白电视机的兼容问题,使黑白电视机也能接收彩色电视信号。/ n# T7 T6 N }* ~$ N YUV与RGB相互转换的公式如下(RGB取值范围均为0-255): Y = 0.299R + 0.587G + 0.114B U = -0.147R - 0.289G + 0.436B! J) Q7 L' r1 F2 ~5 s* Z V = 0.615R - 0.515G - 0.100B, r/ ]# @6 N; z9 f5 Z6 K # K; i9 b" |( P; x" Y R = Y + 1.14V, s1 I; p3 j+ T( i' \6 W6 T8 ? G = Y - 0.39U - 0.58V4 F4 P! e0 t" s Y( s H0 Q* W B = Y + 2.03U Q" N! m, E+ C; e3 e4 i) s' Y# i 在DirectShow 中,常见的RGB格式有RGB1、RGB4、RGB8、RGB565、RGB555、RGB24、RGB32、ARGB32等;常见的YUV格式有 YUY2、YUYV、YVYU、UYVY、AYUV、Y41P、Y411、Y211、IF09、IYUV、YV12、YVU9、YUV411、 YUV420等。作为视频媒体类型的辅助说明类型(Subtype),它们对应的GUID见表2.3。5 w2 b: G6 v \0 n2 R' [2 B 表2.3 常见的RGB和YUV格式4 \0 ^9 x7 k" S4 E' M7 y GUID 格式描述 MEDIASUBTYPE_RGB1 2色,每个像素用1位表示,需要调色板 MEDIASUBTYPE_RGB4 16色,每个像素用4位表示,需要调色板7 U: K; O, z( Q% \! i" j MEDIASUBTYPE_RGB8 256色,每个像素用8位表示,需要调色板 MEDIASUBTYPE_RGB565 每个像素用16位表示,RGB分量分别使用5位、6位、5位 MEDIASUBTYPE_RGB555 每个像素用16位表示,RGB分量都使用5位(剩下的1位不用) MEDIASUBTYPE_RGB24 每个像素用24位表示,RGB分量各使用8位+ @' p4 ]2 V' E; H/ z MEDIASUBTYPE_RGB32 每个像素用32位表示,RGB分量各使用8位(剩下的8位不用). ]3 J# t g8 s! b: w5 V7 \ MEDIASUBTYPE_ARGB32 每个像素用32位表示,RGB分量各使用8位(剩下的8位用于表示Alpha通道值) MEDIASUBTYPE_YUY2 YUY2格式,以4:2:2方式打包 MEDIASUBTYPE_YUYV YUYV格式(实际格式与YUY2相同) MEDIASUBTYPE_YVYU YVYU格式,以4:2:2方式打包 MEDIASUBTYPE_UYVY UYVY格式,以4:2:2方式打包5 E* ^; a9 n# |) Q/ {3 v4 G2 A MEDIASUBTYPE_AYUV 带Alpha通道的4:4:4 YUV格式: `7 J) p" e; N5 }. N" X3 @7 h2 ` MEDIASUBTYPE_Y41P Y41P格式,以4:1:1方式打包 MEDIASUBTYPE_Y411 Y411格式(实际格式与Y41P相同)$ \: V4 Z8 W6 a, T c MEDIASUBTYPE_Y211 Y211格式 MEDIASUBTYPE_IF09 IF09格式+ S5 N( ^( T1 x4 u9 n8 i MEDIASUBTYPE_IYUV IYUV格式 MEDIASUBTYPE_YV12 YV12格式 MEDIASUBTYPE_YVU9 YVU9格式 + k; y: k) C4 \/ v 下面分别介绍各种RGB格式。 ) k# X8 }5 | U7 s+ \ ¨ RGB1、RGB4、RGB8都是调色板类型的RGB格式,在描述这些媒体类型的格式细节时,通常会在BITMAPINFOHEADER数据结构后面跟着 一个调色板(定义一系列颜色)。它们的图像数据并不是真正的颜色值,而是当前像素颜色值在调色板中的索引。以RGB1(2色位图)为例,比如它的调色板中 定义的两种颜色值依次为0x000000(黑色)和0xFFFFFF(白色),那么图像数据001101010111…(每个像素用1位表示)表示对应各 像素的颜色为:黑黑白白黑白黑白黑白白白…。 ¨ RGB565使用16位表示一个像素,这16位中的5位用于R,6位用于G,5位用于B。程序中通常使用一个字(WORD,一个字等于两个字节)来操作一个像素。当读出一个像素后,这个字的各个位意义如下:+ {8 T9 Y! Q6 S 高字节 低字节! } M- s9 M; V# U' I) |7 O R R R R R G G G G G G B B B B B 可以组合使用屏蔽字和移位操作来得到RGB各分量的值:' U% D) }, i) t+ t, d+ U # K$ e; j1 U3 e% {8 r$ n #define RGB565_MASK_RED 0xF800, [5 S3 ^6 O0 U+ Y! ` #define RGB565_MASK_GREEN 0x07E0; n8 w8 L( I4 S( d \& m #define RGB565_MASK_BLUE 0x001F2 b% m0 N# r8 B R = (wPixel RGB565_MASK_RED) >> 11; // 取值范围0-31 G = (wPixel RGB565_MASK_GREEN) >> 5; // 取值范围0-63 B = wPixel RGB565_MASK_BLUE; // 取值范围0-31 ¨ RGB555是另一种16位的RGB格式,RGB分量都用5位表示(剩下的1位不用)。使用一个字读出一个像素后,这个字的各个位意义如下:3 b: x3 V, @, B( a: ]% D 高字节 低字节- K) |. Z9 w4 b+ w/ U/ Z" I- i X R R R R R G G G G G B B B B B (X表示不用,可以忽略) 可以组合使用屏蔽字和移位操作来得到RGB各分量的值:# z0 ]% l$ L8 A/ H L0 x: y! P: g ( F5 b C" t, s( O5 O5 X2 l7 d% F6 Y #define RGB555_MASK_RED 0x7C003 L/ b7 \: w" _3 d; A1 \; ?# W #define RGB555_MASK_GREEN 0x03E0 #define RGB555_MASK_BLUE 0x001F5 p# W5 a/ D% x8 Y4 R$ l2 a$ ^ R = (wPixel RGB555_MASK_RED) >> 10; // 取值范围0-31 G = (wPixel RGB555_MASK_GREEN) >> 5; // 取值范围0-31 B = wPixel RGB555_MASK_BLUE; // 取值范围0-31 ¨ RGB24使用24位来表示一个像素,RGB分量都用8位表示,取值范围为0-255。注意在内存中RGB各分量的排列顺序为:BGR BGR BGR…。通常可以使用RGBTRIPLE数据结构来操作一个像素,它的定义为: 6 k, V9 |$ e7 P3 `2 ? B% m typedef struct tagRGBTRIPLE { BYTE rgbtBlue; // 蓝色分量 BYTE rgbtGreen; // 绿色分量 BYTE rgbtRed; // 红色分量 } RGBTRIPLE; ¨ RGB32使用32位来表示一个像素,RGB分量各用去8位,剩下的8位用作Alpha通道或者不用。(ARGB32就是带Alpha通道的 RGB32。)注意在内存中RGB各分量的排列顺序为:BGRA BGRA BGRA…。通常可以使用RGBQUAD数据结构来操作一个像素,它的定义为: typedef struct tagRGBQUAD { BYTE rgbBlue; // 蓝色分量 BYTE rgbGreen; // 绿色分量% G% H* d6 {* Z BYTE rgbRed; // 红色分量' @' P4 q5 P0 Z" _ BYTE rgbReserved; // 保留字节(用作Alpha通道或忽略) } RGBQUAD; 下 面介绍各种YUV格式。 YUV格式通常有两大类:打包(packed)格式和平面(planar)格式。前者将YUV分量存放在同一个数组中,通常是几个 相邻的像素组成一个宏像素(macro-pixel);而后者使用三个数组分开存放YUV三个分量,就像是一个三维平面一样。 表2.3中的YUY2到 Y211都是打包格式,而IF09到YVU9都是平面格式。(注意:在介绍各种具体格式时,YUV各分量都会带有下标,如Y0、U0、V0表示第一个像素 的YUV分量,Y1、U1、V1表示第二个像素的YUV分量,以此类推。)) C" {0 u _" b8 J - I3 R$ r" ~# B8 F ¨ YUY2(和YUYV)格式为每个像素保留Y分量,而UV分量在水平方向上每两个像素采样一次。一个宏像素为4个字节,实际表示2个像素。(4:2:2的意思为一个宏像素中有4个Y分量、2个U分量和2个V分量。)图像数据中YUV分量排列顺序如下:0 e% j8 r" s4 O" J% Y Y0 U0 Y1 V0 Y2 U2 Y3 V2 … , ^9 B* r n8 Y" u" @ ¨ YVYU格式跟YUY2类似,只是图像数据中YUV分量的排列顺序有所不同:. X, C) f4 j. }2 Z Y0 V0 Y1 U0 Y2 V2 Y3 U2 … ¨ UYVY格式跟YUY2类似,只是图像数据中YUV分量的排列顺序有所不同:. x. a; D) B D' `% C3 T( h U0 Y0 V0 Y1 U2 Y2 V2 Y3 … ! J G* u# r; R4 }: [ ¨ AYUV格式带有一个Alpha通道,并且为每个像素都提取YUV分量,图像数据格式如下:9 N" a8 Z0 m x: l# ? A0 Y0 U0 V0 A1 Y1 U1 V1 …; z2 ?' ~9 {0 A1 ^, p ¨ Y41P(和Y411)格式为每个像素保留Y分量,而UV分量在水平方向上每4个像素采样一次。一个宏像素为12个字节,实际表示8个像素。图像数据中YUV分量排列顺序如下: }# u" x1 m6 ?$ F; |7 ^8 v7 ?7 y& L U0 Y0 V0 Y1 U4 Y2 V4 Y3 Y4 Y5 Y6 Y8 … ; U: c5 y0 N# {9 D ¨ Y211格式在水平方向上Y分量每2个像素采样一次,而UV分量每4个像素采样一次。一个宏像素为4个字节,实际表示4个像素。图像数据中YUV分量排列顺序如下:" @* q/ | F7 s+ J3 e+ ^ Y0 U0 Y2 V0 Y4 U4 Y6 V4 … ¨ YVU9格式为每个像素都提取Y分量,而在UV分量的提取时,首先将图像分成若干个4 x 4的宏块,然后每个宏块提取一个U分量和一个V分量。图像数据存储时,首先是整幅图像的Y分量数组,然后就跟着U分量数组,以及V分量数组。IF09格式与YVU9类似。 ¨ IYUV格式为每个像素都提取Y分量,而在UV分量的提取时,首先将图像分成若干个2 x 2的宏块,然后每个宏块提取一个U分量和一个V分量。YV12格式与IYUV类似。 ! z, |% ~' e4 k1 h6 s5 C' e ¨ YUV411、YUV420格式多见于DV数据中,前者用于NTSC制,后者用于PAL制。YUV411为每个像素都提取Y分量,而UV分量在水平方向上 每4个像素采样一次。YUV420并非V分量采样为0,而是跟YUV411相比,在水平方向上提高一倍色差采样频率,在垂直方向上以U/V间隔的方式减小 一半色差采样,如图2.12所示。( f, j: O" A1 k+ e1 A ! {0 Y, L7 @1 w9 k+ {5 l , m d, T4 J& I/ t 颜色问题:* m' o t3 W) B" c+ A" r5 X 我们在DVDRIP或内嵌的时候,通常会遇到一些关于颜色方面的术语,比如YUV、RGB、YV12、4:2:2、4:2:0等等。不少人刚接触到这些东西的时候,会觉得晕头转向,不知所云。* j, H8 \4 W1 K+ B |7 v 再如,不少文章中强调影片在VDM处理的过程中要选Fast recompress,但是Fast recompress、Normal recompress、Full processing mode之间又有什么区别呢? 本文来一一为您解答这些问题。% @3 y3 Z% U' m5 c, n% M m 本 文是一篇总结性的文章,所以不少段落都是直接摘自其他的文章的。在这里向原作者表示谢意。本文参考了原载于DVD Benchmark由Don Munsil Stacey Spears原作的《The Chroma Upsampling Error(颜色Upsampling错误)》和Silky的文章。 E& Y, z, i4 S0 G/ d2 q 1.什么是RGB? RGB是红绿蓝三原色的意思,R=Red、G=Green、B=Blue。 _0 [) d& O5 [( T& x9 ? - M" B# `4 R/ Y( M 2.什么是YUV/YCbCr/YPbPr?5 B; Y5 D- i S0 S7 x 亮 度信号经常被称作Y,色度信号是由两个互相独立的信号组成。视颜色系统和格式不同,两种色度信号经常被称作U和V或Pb和Pr或Cb和Cr。这些都是由不 同的编码格式所产生的,但是实际上,他们的概念基本相同。在DVD中,色度信号被存储成Cb和Cr(C代表颜色,b代表蓝色,r代表红色)。 7 [; q4 M" G# O% {! A' i6 ?! A3 k; M 3.什么是4:4:4、4:2:2、4:2:0?3 R0 l7 _ f. f3 B. k 在 最近十年中,视频工程师发现人眼对色度的敏感程度要低于对亮度的敏感程度。在生理学中,有一条规律,那就是人类视网膜上的视网膜杆细胞要多于视网膜锥细 胞,说得通俗一些,视网膜杆细胞的作用就是识别亮度,而视网膜锥细胞的作用就是识别色度。所以,你的眼睛对于亮和暗的分辨要比对颜色的分辨精细一些。正是 因为这个,在我们的视频存储中,没有必要存储全部颜色信号。既然眼睛看不见,那为什么要浪费存储空间(或者说是金钱)来存储它们呢?( Z. n7 I: @ i# J8 q 像Beta或VHS之类的消费用录像带就得益于将录像带上的更多带宽留给黑—白信号(被称作“亮度”),将稍少的带宽留给彩色信号(被称作“色度”)。 在MPEG2(也就是DVD使用的压缩格式)当中,Y、Cb、Cr信号是分开储存的(这就是为什么分量视频传输需要三条电缆)。其中Y信号是黑白信号,是以全分辨率存储的。但是,由于人眼对于彩色信息的敏感度较低,色度信号并不是用全分辨率存储的。 色 度信号分辨率最高的格式是4:4:4,也就是说,每4点Y采样,就有相对应的4点Cb和4点Cr。换句话说,在这种格式中,色度信号的分辨率和亮度信号的 分辨率是相同的。这种格式主要应用在视频处理设备内部,避免画面质量在处理过程中降低。当图像被存储到Master Tape,比如D1或者D5,的时候,颜色信号通常被削减为4:2:2。, v+ b8 o! x4 b( g6 Y [center] 在图一中,你可以看到4:4:4格式的亮度、色度采样分布。就像图中所表示的,画面中每个象素都有与之对应的色度和亮度采样信息。[/center]" D$ }7 ~' C7 T 其 次就是4:2:2,就是说,每4点Y采样,就有2点Cb和2点Cr。在这种格式中,色度信号的扫描线数量和亮度信号一样多,但是每条扫描线上的色度采样点 数却只有亮度信号的一半。当4:2:2信号被解码的时候,“缺失”的色度采样,通常由一定的内插补点算法通过它两侧的色度信息运算补充。( N, h$ b' z! W [center]3 S/ ^. \* N1 e, L% h9 t! Z 图 二表示了4:2:2格式亮度、色度采样的分布情况。在这里,每个象素都有与之对应的亮度采样,同时一半的色度采样被丢弃,所以我们看到,色度采样信号每隔 一个采样点才有一个。当着张画面显示的时候,缺少的色度信息会由两侧的颜色通过内插补点的方式运算得到。就像上面提到的那样,人眼对色度的敏感程度不如亮 度,大多数人并不能分辨出4:2:2和4:4:4颜色构成的画面之间的不同。[/center] l9 B( J `% j- o: }% E 色度信号分辨率最低的格式,也就是DVD所使用的 格式,就是4:2:0了。事实上4:2:0是一个混乱的称呼,按照字面上理解,4:2:0应该是每4点Y采样,就有2点Cb和0点Cr,但事实上完全不是 这样。事实上,4:2:0的意思是,色度采样在每条横向扫描线上只有亮度采样的一半,扫描线的条数上,也只有亮度的一半!换句话说,无论是横向还是纵向, 色度信号的分辨率都只有亮度信号的一半。举个例子,如果整张画面的尺寸是720*480,那么亮度信号是720*480,色度信号只有360*240。在 4:2:0中,“缺失”的色度采样不单单要由左右相邻的采样通过内插补点计算补充,整行的色度采样也要通过它上下两行的色度采样通过内插补点运算获得。这 样做的原因是为了最经济有效地利用DVD的存储空间。诚然,4:4:4的效果很棒,但是如果要用4:4:4存储一部电影,我们的DVD盘的直径至少要有两 英尺(六十多厘米)! [center], h5 |% M8 H# }% k 图三表示了概念上4:2:0颜色格式非交错画面中亮度、色度采样信号的排列情况。同4:2:2格式 一样,每条扫描线中,只有一半的色度采样信息。与4:2:2不同的是,不光是横向的色度信息被“扔掉”了一半,纵向的色度信息也被“扔掉”了一半,整个屏 幕中色度采样只有亮度采样的四分之一。请注意,在4:2:0颜色格式中,色度采样被放在了两条扫描线中间。为什么会这样呢?很简单:DVD盘上的颜色采样 是由其上下两条扫描线的颜色信息“平均”而来的。比如,图三中,第一行颜色采样(Line 1和Line 2中间夹着的那行)是由Line 1和Line 2“平均”得到的,第二行颜色采样(Line 3和Line 4中间夹着的那行)也是同样的道理,是由Line 3和Line 4得到的。: k1 e# A0 B2 B! |3 o( P- t( v B 虽然文章中多次提到“平均”这个概念,但是这个“平均”可不是我们通常意义上的(a+B)/2的平均。颜色的处理有极其复杂的算法保证其最大限度地减少失真,接近原始质量。[/center]' O1 P( |7 W; b" H! e+ y+ g ) G) d, u! u* d! C$ T 4.什么是YV12,什么是YUY2? 在个人计算机上,这些YUV读出来以后会以一些格式包装起来,送给软件或硬件处理。包装的方式分成两种,一种是Packed format,把Y和相对应的UV包在一起。另一种是Planar format,把Y和U和V三种分别包装,拆成三个plane(平面)。 其中YV12和YUY2都是一种YUV的包装格式,而且两种都是Packed format。(实际上,只有YUY2才是Packed format,而YV12则是属于Planar format。). P, O; Z, b0 `7 W0 [+ _ YV12和YUY2的不同,在于YV12是YUV4:2:0格式,也就是DVD/VCD上原本储存的格式。YUY2则是YUV4:2:2格式。, o" y* Q3 @, h, h* u( P: i - f2 ~ l4 a) q* _) _8 q: l1 T. Y9 x 5.为什么影片在VDM处理的过程中要选Fast recompress?% V! q- z# `6 r7 Y+ t" w5 a3 ~, G 选择Fast recompress的原因,现得从Avisynth 2.5讲起。 Avisynth 2.5最大的特色,就是支持YV12直接处理。我们知道原始MPEG数据是YUV4:2:0,也就是YV12的格式,以前我们在做DivX/XviD压缩的时候,处理流程是:# t4 C2 R) a) w* o( T7 G; C DVD/VCD(YUV 4:2:0) -> DVD2AVI(YUV 4:2:0 ->YUV4:2:2 ->YUV4:4:4 -> RGB24) -> VFAPI(RGB24) -> TMPGEnc/AviUtl/VirtualDub(RGB24) -> DivX/XviD Codec(RGB24 ->YUV4:2:0) -> MPEG-4(YUV 4:2:0) ps. VFAPI 内部只能以 RGB24 传递数据,所以会转成 RGB24 输出: }4 h. g8 W9 s/ q. d 或是 DVD/VCD(YUV 4:2:0) -> MPG2DEC.DLL(YUV 4:2:0 ->YUV4:2:2) -> Avisynth 2.0.x(只能用支援YUV4:2:2 的滤镜,不能用 RGB24/32 的 filter) -> VirtualDub(YUV 4:2:2,不能使用 VD 的 filter,因为 VD 的 filetr 都是在 RGB32 上处理,压缩时要选 Fast recompress,才会直接原封不动的送YUV4:2:2,也就是 YUY2 的数据给 Codec 压缩) -> DivX/XviD Codec(YUV 4:2:2 ->YUV4:2:0) -> MPEG-4(YUV 4:2:0) 所以以前的处理流程中间要经过好几次YUV<-> RGB 的转换。这个转换是有损的,做得越多次,原始的色彩信息就损失的越严重。而且这个转换的计算又耗时(这就可以解释为什么我们将YV12转为RGB输出时会卡的多,不过,RGB的品质真的更高的多 ![]() 1. 处理的数据量少。(YV12的资料,UV 比YUY2少一半,比RGB 24/32少更多) 2. 不用转换计算# g! i7 }' F' P" G3 N4 q 所以速度快。再加上又可以避免YUV<-> RGB 转换的损失,岂不是一举两得? 所以支持YV12的 Avisynth 2.5 就诞生了。% H- i3 w: S% j 但 是目前VirtualDub还是不支持 YV12,即使选 Fast recompress,VD还是会将YV12的输入转为 YUY2。所以要得到全程YV12处理的好处,必须使用VirtualDubMod才行,这个改版才有支持YV12。只有在选择Fast recompress的时候,VDM才不会进行任何处理,直接将数据丢给编码器压缩,这样就能保留YV12,实现了全程YV12。 |
质数又称为素数,要解决这个问题,我们首先要对输入的数字进行判断,判断其本身是否为素数。如果为素数则其因式只有1与其本身。创建好这个函数之后,我们开始整体代码的编写这样就实现了我们的目的,谢谢大家的阅览
spring启动报错:nested exception is org.springframework.core.NestedIOException: Failed to parse config resource: class path resource [applicationContext-dubbo-provider.xml]; nested exception ...
<?php//引入类库include "../lib/phpexcel/PHPExcel.php";include "../config.php";//include "../lib/phpexcel/PHPExcel/IOFactory.php"/*读取excel文件,并进行相应处理*/// $fileName = "C:/Users/zhaojuan/Desktop/苏州采购明细清单_20200918.xlsx";// if (!file_exists($fileName)) {/
开发工具与关键技术:VS/MVC作者:何桂朋撰写时间:2019年4月22日Crystal Reports(水晶报表)是一款商务智能(BI)软件,主要用于设计及产生报表。水晶报表是业内最专业、功能最强的报表系统,它除了强大的报表功能外。最大的优势是实现了与绝大多数流行开发工具的集成和接口。在VS.Net平台做过报表开发的程序员,一定都对水晶报表强大、高效、集成等特性留下了深刻印象。 除了开发新...
HTTP概念特点历史版本请求消息的数据格式请求行(请求方式 请求url 请求协议/版本)请求头(请求头名称:请求头值)键值对请求空行(空行)请求体(正文)概念hyper text transfer Protocol 超文本传输协议(传输协议定义了客户端和服务器端通信时,发送数据的规则)特点基于TCP/IP的高级协议(安全)默认端口80基于请求/响应模型:一次请求对应一次响应无状态:每次请求之间相互独立,不能交互数据历史版本1.0:每一次请求都会建立连接(F12 network查看请求
问题:由于设置行高没有类似设置字体或字体大小那样,比如设置字体样式document.execCommand('styleWithCSS', false, true)document.execCommand('fontname', false, '微软雅黑')这就需要我们自己去实现行高的效果:// 设置行距export const lineHeight = (value) => { // 获取当前的选区 let selection = window.getSelection(
http://www.bejson.com/jsonviewernew/
在设计阶段加强各专业(系统、土建和设备等)的协同和沟通,加强设计、采购、施工、调试各业务板块的协同,成为全球核电 EPC 工程公司的领导者。NIAEP 应用达索系统( DS )的 3D EXPERIENCE( 3 维体验平台) 实现了整合不同设计工具的跨专业协同设计,打造了统一的核电站 3D 设计成果(数字样机 DMU ),同时应用达索的应用程序 CATIA,ENOVIA 和 DELMIA 创新发明了 Multi-D (多维)施工技术,提高了设计质量,并将 3D 设计成果应用在施工阶段,基于 3D 模型进行
DELMIA 由 3DEXPERIENCE 平台提供技术支持,可帮助各种行业的从业者和服务提供商将价值网络的虚拟世界与真实世界联系在一起,以开展协作、建模和优化,随后将成果付诸执行。卓越运营需要整个价值网络的协调一致。DELMIA 提供的解决方案可将建模和仿真的虚拟世界运用于真实的运营之中,为价值网络中的各方相关人员提供完整的解决方案,包括供应商、制造商、物流和运输提供商到服务运营商和工作团队。**如何有效结合工业设备企业现有流程,以较少的代价换取更高效的数字化应用,是当下许多制造企业所关注的焦点。**本次
本次网络交流以三维数字化工厂为切入点,基于3DEXPERIENCE平台搭建的数字化工厂以产品全生命周期的相关数据为基础
Solaris 10本身就自带sftp客户端及sftp服务端,其中,sftp服务端是使用sshd来实现SSH文件传输协议的。缺省情况下,Solaris 10的ssh服务是开启的,sftp服务也是开启的,所有本地unix用户账户都可以使用sftp登录本机。 缺省ssh服务是开启的,如果要禁止ssh服务,可以使用"svcadm disable svc:/network/ssh:defau
第十八讲:达索系统赋能包装消费品与零售行业的数字化转型 | 达索系统百世慧