fast_rcnn_fastrcn神经网络-程序员宅基地

Fast R-CNN

首先声明:本文很多内容来自两个博客: RCNN, Fast-RCNN, Faster-RCNN的一些事目标检测--从RCNN到Faster RCNN 串烧

先回归一下: R-CNN ,SPP-net



R-CNN和SPP-net在训练时pipeline是隔离的:提取proposal,CNN提取特征,SVM分类,bbox regression。

 

Fast R-CNN 两大主要贡献点 :

  • 1 实现大部分end-to-end训练(提proposal阶段除外): 所有的特征都暂存在显存中,就不需要额外的磁盘空
    • joint training (SVM分类,bbox回归 联合起来在CNN阶段训练)把最后一层的Softmax换成两个,一个是对区域的分类Softmax(包括背景),另一个是对bounding box的微调。这个网络有两个输入,一个是整张图片,另一个是候选proposals算法产生的可能proposals的坐标。(对于SVM和Softmax,论文在SVM和Softmax的对比实验中说明,SVM的优势并不明显,故直接用Softmax将整个网络整合训练更好。对于联合训练: 同时利用了分类的监督信息和回归的监督信息,使得网络训练的更加鲁棒,效果更好。这两种信息是可以有效联合的。)
  • 2 提出了一个RoI层,算是SPP的变种,SPP是pooling成多个固定尺度,RoI只pooling到单个固定的尺度 (论文通过实验得到的结论是多尺度学习能提高一点点mAP,不过计算量成倍的增加,故单尺度训练的效果更好。

其它贡献点:

  • 指出SPP-net训练时的不足之处,并提出新的训练方式,就是把 同张图片的proposals作为一批进行学习,而proposals的坐标直接映射到conv5层上,这样相当于一个batch一张图片的所以训练样本只卷积了一次。文章提出他们通过这样的训练方式或许存在不收敛的情况,不过实验发现,这种情况并没有发生。这样加快了训练速度。 ( 实际训练时,一个batch训练两张图片,每张图片训练64个RoIs(Region of Interest))

注意点:

  • 论文在回归问题上并没有用很常见的2范数作为回归,而是使用所谓的鲁棒L1范数作为损失函数。
  • 论文 将比较大的全链接层用SVD分解了一下使得检测的时候更加迅速。虽然是别人的工作,但是引过来恰到好处(矩阵相关的知识是不是可以在检测中发挥更大的作用呢?)。

 

ROI Pooling

首先需要介绍RCNN系列里的一个核心算法模块,即ROI Pooling。我们知道在ImageNet数据上做图片分类的网络,一般都是先把图片crop、resize到固定的大小(i.e. 224*224),然后输入网络提取特征再进行分类,而对于检测任务这个方法显然并不适合,因为原始图像如果缩小到224这种分辨率,那么感兴趣对象可能都会变的太小无法辨认。RCNN的数据输入和SPPNet有点类似,并不对图片大小限制,而实现这一点的关键所在,就是ROI Pooling网络层,它可以在任意大小的图片feature map上针对输入的每一个ROI区域提取出固定维度的特征表示,保证后续对每个区域的后续分类能够正常进行。

ROI Pooling的具体实现可以看做是针对ROI区域的普通整个图像feature map的Pooling,只不过因为不是固定尺寸的输入,因此每次的pooling网格大小得手动计算,比如某个ROI区域坐标为 (x1,y1,x2,y2),那么输入size为 (y2−y1)(x2−x1) ,如果pooling的输出size为 pooled_heightpooled_width ,那么每个网格的size为

 

Bounding-box Regression

有了ROI Pooling层其实就可以完成最简单粗暴的深度对象检测了,也就是先用selective search等proposal提取算法得到一批box坐标,然后输入网络对每个box包含一个对象进行预测,此时,神经网络依然仅仅是一个图片分类的工具而已,只不过不是整图分类,而是ROI区域的分类,显然大家不会就此满足,那么,能不能把输入的box坐标也放到深度神经网络里然后进行一些优化呢?rbg大神于是又说了"yes"。在Fast-RCNN中,有两个输出层:第一个是针对每个ROI区域的分类概率预测, p=(p0,p1,,pK);第二个则是针对每个ROI区域坐标的偏移优化, tk=(tkx,tky,tkw,tkh) 0≤kK 是多类检测的类别序号。这里我们着重介绍第二部分,即坐标偏移优化。

假设对于类别 k,在图片中标注了一个groundtruth坐标: t=(tx,ty,tw,th) ,而预测值为 t=(tx,ty,tw,th) ,二者理论上越接近越好,

这里定义损失函数:

其中

这里, smoothL1(x)中的x即为 titi (感觉前一个公式为作者笔误,该写成 smoothL1(titi) ),即对应坐标的差距。该函数在 (−1,1) 之间为二次函数,而其他区域为线性函数,作者表示这种形式可以增强模型对异常数据的鲁棒性,整个函数在matplotlib中画出来是这样的

对应的代码在smooth_L1_loss_layer.cu中。

 

参考:

 

 

 

 

-----------------------------------分割线--------------------------------------------

 

 

 

 

 

Bounding box regression

R-CNN中的bounding box回归

下面先介绍R-CNN和Fast R-CNN中所用到的边框回归方法.

(1)   什么是IOU 

(2)   为什么要做Bounding-box regression? 
 
如上图所示,绿色的框为飞机的Ground Truth,红色的框是提取的Region Proposal.那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5),那么这张图相当于没有正确的检测出飞机.如果我们能对红色的框进行微调,使得经过微调后的窗口跟Ground Truth更接近,这样岂不是定位会更准确.确实,Bounding-box regression 就是用来微调这个窗口的.

(3)   回归/微调的对象是什么? 

(4)   Bounding-box regression(边框回归) 
那么经过何种变换才能从图11中的窗口P变为窗口呢?比较简单的思路就是: 
 


注意:只有当Proposal和Ground Truth比较接近时(线性问题),我们才能将其作为训练样本训练我们的线性回归模型,否则会导致训练的回归模型不work(当Proposal跟GT离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理).这个也是G-CNN: an Iterative Grid Based Object Detector多次迭代实现目标准确定位的关键. 
线性回归就是给定输入的特征向量X,学习一组参数W,使得经过线性回归后的值跟真实值Y(Ground Truth)非常接近.即.那么Bounding-box中我们的输入以及输出分别是什么呢? 

     

 

 

 

 

-----------------------------------分割线--------------------------------------------

 

 

 

 

Fast RCNN

1. 联合训练(Joint-training)的SPP-NET

2. 更高的精度;

3. multi-task

4. 能更新所有的权重

5. 不需要在磁盘中存储特征

6. ROI Pooling只要一个尺度的特征

7. SVD分解加速全连层

在我上帝视角(看完整个线)看来,Fast RCNN提出新的东西并不是太多,往往都是别人忽略的东西,实际上也算是对SPP上的捡漏。当然大神能够找到漏可以捡,所以说这并不是贬义,只是我感觉对这篇论文客观的评价。首先fast rcnn说无论是训练还是测试都比RCNN 和SPP快很多倍。其次,自己提出了一个特殊的层RoI,这个实际上是SPP的变种,SPP是pooling成多个固定尺度,而RoI只pooling到一个固定的尺度(6×6)。网络结构与之前的深度分类网络(alex)结构类似,不过把pooling5层换成了RoI层,并把最后一层的Softmax换成两个,一个是对区域的分类Softmax(包括背景),另一个是对bounding box的微调。这个网络有两个输入,一个是整张图片,另一个是候选proposals算法产生的可能proposals的坐标。训练的时候,它指出了SPP训练的不足之处,并提出新的训练方式,就是把同张图片的prososals作为一批进行学习,而proposals的坐标直接映射到conv5层上,这样相当于一个batch一张图片的所以训练样本只卷积了一次。文章提出他们通过这样的训练方式或许存在不收敛的情况,不过实验发现,这种情况并没有发生。这样加快了训练速度。另外,它同时利用了分类的监督信息和回归的监督信息,使得网络训练的更加鲁棒,而且效果更好。值得注意的是,他在回归问题上并没有用很常见的2范数作为回归,而是使用所谓的鲁棒L1范数作为损失函数(可能在其他地方很常见,不过我是第一次见)。实际训练时,一个batch训练两张图片,每张图片训练64个RoIs(Region of Interest),前向反向计算就不说了,如果把pooling的反向计算理解了,这个roi应该不会太难。这篇论文提到了一个让人引发遐想的地方就是它将比较大的全链接层用SVD分解了一下使得检测的时候更加迅速。虽然是别人的工作,但是引过来恰到好处。最后作者写了个类似讨论的板块,并从实验角度说明了多任务对训练是否有帮助?尺度不变性如何实现?是单尺度学习还是多尺度学习?(注意,这里的尺度是对整张图片的resize尺度)得到的结论是多尺度学习能提高一点点map,不过计算量成倍的增加了,故单尺度训练的效果更好。最后在SVM和Softmax的对比实验中说明,SVM的优势并不明显,故直接用Softmax将整个网络整合训练更好。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/DL_CreepingBird/article/details/78586320

智能推荐

python opencv resize函数_python opencv 等比例调整(缩放)图片分辨率大小代码 cv2.resize()...-程序员宅基地

文章浏览阅读1.3k次。# -*- coding: utf-8 -*-"""@File : 200113_等比例调整图像分辨率大小.py@Time : 2020/1/13 13:38@Author : Dontla@Email : [email protected]@Software: PyCharm"""import cv2def img_resize(image):height, width = image...._opencv小图等比例缩放

【OFDM、OOK、PPM、QAM的BER仿真】绘制不同调制方案的误码率曲线研究(Matlab代码实现)-程序员宅基地

文章浏览阅读42次。对于这些调制技术的误码率(BER)研究是非常重要的,因为它们可以帮助我们了解在不同信道条件下系统的性能表现。通过以上步骤,您可以进行OFDM、OOK、PPM和QAM的误码率仿真研究,并绘制它们的误码率曲线,以便更好地了解它们在不同信道条件下的性能特点。针对这些调制技术的BER研究是非常重要的,可以帮助我们更好地了解这些技术在不同信道条件下的性能表现,从而指导系统设计和优化。6. 分析结果:根据误码率曲线的比较,分析每种调制方案在不同信噪比条件下的性能,包括其容忍的信道条件和适用的应用场景。_ber仿真

【已解决】Vue的Element框架,日期组件(el-date-picker)的@change事件,不会触发。_el-date-picker @change不触发-程序员宅基地

文章浏览阅读2.5w次,点赞3次,收藏3次。1、场景照抄官方的实例,绑定了 myData.Age 这个值。实际选择某个日期后,从 vuetool(开发工具)看,值已经更新了,但视图未更新。2、尝试绑定另一个值: myData,可以正常的触发 @change 方法。可能是:值绑定到子对象时,组件没有侦测到。3、解决使用 @blur 代替 @change 方法。再判断下 “值有没有更新” 即可。如有更好的方法,欢迎评论!..._el-date-picker @change不触发

PCL学习:滤波—Projectlnliers投影滤波_projectinliers-程序员宅基地

文章浏览阅读1.5k次,点赞2次,收藏8次。Projectlnliersclass pcl: : Projectlnliers< PointT >类 Projectlnliers 使用一个模型和一组的内点的索引,将内点投影到模型形成新的一个独立点云。关键成员函数 void setModelType(int model) 通过用户给定的参数设置使用的模型类型 ,参数 Model 为模型类型(见 mo..._projectinliers

未处理System.BadImageFormatException”类型的未经处理的异常在 xxxxxxx.exe 中发生_“system.badimageformatexception”类型的未经处理的异常在 未知模块。 -程序员宅基地

文章浏览阅读2.4k次。“System.BadImageFormatException”类型的未经处理的异常在 xxxx.exe 中发生其他信息: 未能加载文件或程序集“xxxxxxx, Version=xxxxxx,xxxxxxx”或它的某一个依赖项。试图加载格式不正确的程序。此原因是由于 ” 目标程序的目标平台与 依赖项的目标编译平台不一致导致,把所有的项目都修改到同一目标平台下(X86、X64或AnyCPU)进行编译,一般即可解决问题“。若果以上方式不能解决,可采用如下方式:右键选择配置管理器,在这里修改平台。_“system.badimageformatexception”类型的未经处理的异常在 未知模块。 中发生

PC移植安卓---2018/04/26_电脑软件移植安卓-程序员宅基地

文章浏览阅读2.4k次。记录一下碰到的问题:1.Assetbundle加载问题: 原PC打包后的AssetBundle导入安卓工程后,加载会出问题。同时工程打包APK时,StreamingAssets中不能有中文。解决方案: (1).加入PinYinConvert类,用于将中文转换为拼音(多音字可能会出错,例如空调转换为KongDiao||阿拉伯数字不支持,如Ⅰ、Ⅱ、Ⅲ、Ⅳ(IIII)、Ⅴ、Ⅵ、Ⅶ、Ⅷ、Ⅸ、Ⅹ..._电脑软件移植安卓

随便推点

聊聊线程之run方法_start 是同步还是异步-程序员宅基地

文章浏览阅读2.4k次。话不多说参考书籍 汪文君补充知识:start是异步,run是同步,start的执行会经过JNI方法然后被任务执行调度器告知给系统内核分配时间片进行创建线程并执行,而直接调用run不经过本地方法就是普通对象执行实例方法。什么是线程?1.现在几乎百分之百的操作系统都支持多任务的执行,对计算机来说每一个人物就是一个进程(Process),在每一个进程内部至少要有一个线程实在运行中,有时线..._start 是同步还是异步

制作非缘勿扰页面特效----JQuery_单击标题“非缘勿扰”,<dd>元素中有id属性的<span>的文本(主演、导演、标签、剧情-程序员宅基地

文章浏览阅读5.3k次,点赞9次,收藏34次。我主要用了层次选择器和属性选择器可以随意选择,方便简单为主大体CSS格式 大家自行构造网页主体<body> <div class='main' > <div class='left'> <img src="images/pic.gif" /> <br/><br/> <img src="images/col.gif" alt="收藏本片"/&_单击标题“非缘勿扰”,元素中有id属性的的文本(主演、导演、标签、剧情

有了这6款浏览器插件,浏览器居然“活了”?!媳妇儿直呼“大开眼界”_浏览器插件助手-程序员宅基地

文章浏览阅读901次,点赞20次,收藏23次。浏览器是每台电脑的必装软件,去浏览器搜索资源和信息已经成为我们的日常,我媳妇儿原本也以为浏览器就是上网冲浪而已,哪有那么强大,但经过我的演示之后她惊呆了,直接给我竖起大拇指道:“原来浏览器还能这么用?大开眼界!今天来给大家介绍几款实用的浏览器插件,学会之后让你的浏览器“活过来”!_浏览器插件助手

NumPy科学数学库_数学中常用的环境有numpy-程序员宅基地

文章浏览阅读101次。NumPy是Python中最常用的科学数学计算库之一,它提供了高效的多维数组对象以及对这些数组进行操作的函数NumPy的核心是ndarray(N-dimensional array)对象,它是一个用于存储同类型数据的多维数组Numpy通常与SciPy(Scientific Python)和 Matplotlib(绘图库)一起使用,用于替代MatLabSciPy是一个开源的Python算法库和数学工具包;Matplotlib是Python语言及其Numpy的可视化操作界面'''_数学中常用的环境有numpy

dind(docker in docker)学习-程序员宅基地

文章浏览阅读1.1w次。docker in docker说白了,就是在docker容器内启动一个docker daemon,对外提供服务。优点在于:镜像和容器都在一个隔离的环境,保持操作者的干净环境。想到了再补充 :)一:低版本启动及访问启动1.12.6-dinddocker run --privileged -d --name mydocker docker:1.12.6-dind在其他容器访问d..._dind

推荐文章

热门文章

相关标签