C语言中的数据结构--双向链表-程序员宅基地

技术标签: c语言  链表  数据结构  

前言

上一节我们已经学习完了单链表(单向不带头不循环链表)的所有内容,我们在链表的分类里面知道了,链表分为单向的和双向的,那么本节我们就来进行双向链表(带头双向循环链表)的学习,那么废话不多说,我们正式进入今天的学习

双向链表的结构

该图片来源于网络

通过之前的学习我们知道,链表是由节点组成的。那么双向链表也同样如此,只是双向链表的节点与单链表的节点存在一些不同:

1.双向链表节点包含数据 [int data];

2.双向链表节点包含指向下一个节点的指针 [struct ListNode* next];

3.双向链表节点包含指向上一个节点的指针 [struct ListNode* prev];

因为双向链表可以从后往前或者从前往后遍历,所以双向链表里面的节点不仅需要有包含指向下一个节点的指针,还需要有指向上一个节点的指针

那么我们就可以定义双向链表里面的节点的结构了:

typedef int LTDataType;
//定义双向链表的结构
typedef struct ListNode
{
	LTDataType data;
	struct ListNode* next;
	struct ListNode* prev;
}LTNode;

之前我们在学习单链表的时候,我们在使用时直接创建一个空链表,然后让空链表直接等于空指针,再将节点依次连接在新链表的尾部

双向链表不可以是一个空链表,在创建双向链表的时候必须要初始化一个哨兵位,然后再执行节点的插入删除

双向链表的初始化

在双向链表中修改数据之前,我们必须保证双向链表中初始化了一个头节点,所以我们先要进行双向链表的初始化;

因为我们要对双向链表里面的数据进行修改,所以我们传入的变量应该是一个二级指针

我们先定义一个函数用于申请节点,在申请节点的时候我们需要考虑一个问题:在初始化的时候我们不能把next指针和prev指针都初始化为空指针,因为这样会导致链表不循环。正确的初始化过程应该是让next指针和prev指针都指向自己,所以据此我们可以写出双向链表申请节点的代码:

LTNode* LTBuyNode(LTDataType x)
{
	//申请节点
	LTNode* node = (LTNode*)malloc(sizeof(LTNode));
	if (node == NULL)
	{
		perror("malloc fail!");
		exit(1);
	}
	node->data = x;
	node->next = node->prev = node;
	return node;
}

在初始化时,我们需要给双向链表创建一个哨兵位,我们随便传入一个合格的数据就行:

//初始化
void LTInit(LTNode** pphead)
{
	//给双向链表创建一个哨兵位
	*pphead = LTBuyNode(-1);
}

双向链表的打印

要实现双向链表的打印,我们需要遍历双向链表。因为双向链表是循环链表,所以我们该采取什么方法去遍历呢?

此时我们不能采取之前单链表的遍历方法,不然就会造成死循环。此时我们发现了一个特殊节点--哨兵位,我们可以从第一个有效的节点处开始遍历,直到遍历到哨兵位跳出循环;

所以根据这些,我们可以写出代码:

//打印
void LTPrint(LTNode* phead)
{
	LTNode* pcur = phead->next;
	while (pcur != phead)
	{
		printf("%d->", pcur->data);
		pcur = pcur->next;
	}
	printf("\n");
}

双向链表的尾插

在实现尾插之前,我们首先需要考虑要往尾插代码之中传入什么变量;

因为我们不管是尾插还是头插,哨兵位的位置都不能被修改,都必须在链表中的第一位,所以此时我们传入的变量类型与不带头的链表不同,我们只需要传入一级指针就行了(也可以传二级指针,但是前提是不能修改哨兵位)

1.一级指针 LTNode* phead

2.传入的数据 LTDataType x

尾插的实现

当我们申请了一个新节点的时候,此时该节点的next指针和prev指针都是指向自己的;

我们先来分析一下:当我们申请了一个新节点,并且需要把它尾插到原双向链表之中去,那么它将会影响到原双向链表的头节点和尾节点,所以我们需要对原双向链表的头节点和尾节点进行修改

我们可以通过phead->prev指针找到原双向链表的尾节点,所以我们不需要遍历链表;

因为先修改newnode的next和prev指针不会对原双向链表产生影响,所以我们首先对newnode进行修改。我们让newnode的prev指针指向原双向链表的尾节点,再把newnode的next指针指向双向链表的哨兵位;

接下来我们让原双向链表的头节点和尾节点去指向newnode。我们先让尾节点的next指针指向newnode,再让哨兵位的prev指针指向newnode;

我们最后来考虑一下特殊情况,若双向链表为空链表,此时链表中只有哨兵位。此时我们将该条件代入代码中去,我们发现仍然没有错误

有了这些理论基础,我们可以尝试写一下代码:

//尾插
void LTPushBack(LTNode* phead, LTDataType x)
{
	assert(phead);
	LTNode* newnode = LTBuyNode(x);
	
	newnode->prev = phead->prev;
	newnode->next = phead;

	phead->prev->next = newnode;
	phead->prev = newnode;
}

注意:以下两行代码的顺序不能发生改变,因为要是改了,phead->next指针找到的节点就不是尾节点了,而是newnode节点

下面我们来测试一下:

void ListTest01()
{
	LTNode* plist = NULL;
	LTInit(&plist);
	LTPushBack(plist, 1);
	LTPushBack(plist, 2);
	LTPushBack(plist, 3);
	LTPushBack(plist, 4);
	LTPrint(plist);
}

int main(void)
{
	ListTest01();
	return 0;
}

代码运行正确,编写成功

双向链表的头插

在进行头插之前,我们首先要保证哨兵位不能为空;

我们在进行头插的时候,不是直接把节点插入到哨兵位前面,而是把节点插入到第一个有效的数据前面,把节点插入到哨兵位的前面本质上是尾插

我们首先来分析一下,如果我们把节点头插到第一个有效数据的前面将会影响到哪些节点:我们需要把哨兵位的next指针指向新节点,原链表中的第一个有效数据的prev指针需要指向新节点,同时我们需要把新节点的prev指针指向哨兵位,next指针指向原链表中的第一个有效数据;

因为先修改newnode的next和prev指针不会对原双向链表产生影响,所以我们首先对newnode进行修改。我们把新节点的prev指针指向哨兵位,next指针指向原链表中的第一个有效数据;

然后我们需要把第一个有效数据的prev指针指向新节点,不能先改变哨兵位的next指针,因为这样会导致找不到第一个有效数据。然后我们让第哨兵位的next指针指向新节点;

我们梳理完思路以后就可以开始代码的编写了:

//头插
void LTPushFront(LTNode* phead, LTDataType x)
{
	assert(phead);
	LTNode* newnode = LTBuyNode(x);
	newnode->next = phead->next;
	newnode->prev = phead;

	phead->next->prev = newnode;
	phead->next = newnode;
}

我们来测试一下代码:

void ListTest01()
{
	LTNode* plist = NULL;
	LTInit(&plist);
	LTPushFront(plist, 1);
	LTPushFront(plist, 2);
	LTPushFront(plist, 3);
	LTPushFront(plist, 4);
	LTPrint(plist);
}
int main(void)
{
	ListTest01();
	return 0;
}

代码成功运行,编写成功

双向链表的尾部删除

我们首先来分析一下尾部删除需要传入哪些变量:

因为哨兵位不能被删除,所以我们只需要传入一个一级指针 LTNode* phead;

我们需要保证双向链表的哨兵位不能为空且有效。注意空链表指的是双向链表仅有头节点,而双向链表无效则表示双向链表没有头节点;

我们再来考虑一下删除尾节点会影响到哪些节点:删除尾节点会影响到尾节点的上一个节点以及哨兵位,所以我们在删除尾节点之前,先得修改哨兵位的prev指针和尾节点的上一个节点的next指针

我们先对尾节点的前一个节点进行修改,我们让尾节点的上一个节点的next指针直接指向哨兵位,我们再把哨兵位的prev指针指向尾节点的上一个节点;

此时尾节点对原双向链表没有任何影响,我们直接释放掉尾节点;

据此,我们可以写出代码如下:

//尾删
void LTPopBack(LTNode* phead)
{
	//链表不能为空且有效
	assert(phead && phead->next != phead);
	//尾节点
	LTNode* del = phead->prev;
	del->prev->next = phead;
	phead->prev = del->prev;
	//删除del节点
	free(del);
	del = NULL;
}

下面我们来测试一下:

void ListTest01()
{
	LTNode* plist = NULL;
	LTInit(&plist);
	LTPushFront(plist, 1);
	LTPushFront(plist, 2);
	LTPushFront(plist, 3);
	LTPushFront(plist, 4);
	LTPrint(plist);
	LTPopBack(plist);
	LTPrint(plist);
	LTPopBack(plist);
	LTPrint(plist);
}
int main(void)
{
	ListTest01();
	return 0;
}

代码成功运行,编写成功

双向链表的头部删除

与双向链表的尾部删除一样,我们需要保证双向链表的哨兵位不能为空且有效;

同样的我们也只需要传入一个参数-----一级指针 LTNode* phead;

我们首先来分析一下,进行头部删除会影响哪些节点:进行头部删除将会影响到哨兵位和第一个有效节点的下一个节点;

为了方便,我们创建一个del变量用来存放第一个有效节点,del节点可以通过哨兵位的next指针找到,所以第一个有效节点的下一个节点可以表示为del->next;

我们需要把第一个有效节点的下一个节点的prev指针指向哨兵位,再把哨兵位的next指针指向第一个有效节点的下一个节点,此时对第一个节点修改将不会影响双向链表,所以我们直接释放掉第一个节点;

注意:如果我们不用保存del保存第一个节点,那么当我们在修改了哨兵位以后,将找不到第一个有效节点的下一个节点

//头删
void LTPopFront(LTNode* phead)
{
	//链表不能为空且有效
	assert(phead && phead->next != phead);
	LTNode* del = phead->next;
	phead->next = del->next;
	del->next->prev = phead;
	//删除del
	free(del);
	del = NULL;
}

我们来测试一下头删代码:

代码成功运行,编写成功

在双向链表的指定位置之后插入数据

要想实现在指定的位置插入数据,我们就要先实现查找的功能

双向链表的查找功能

我们来分析一下要想实现查找的功能需要需要传入哪些变量:

1.头节点 LTNode* phead

2.要查找的数据x

查找数据的需要我们遍历双向链表,我们从第一个有效节点开始遍历,直到遍历到哨兵位

据此我们可以写出代码如下:

//查找
LTNode* LTFind(LTNode* phead, LTDataType x)
{
	LTNode* pcur = phead->next;
	while (pcur != phead)
	{
		if (pcur->data == x)
		{
			return pcur;
		}
		pcur = pcur->next;
	}
	//没有找到
	return NULL;
}

实现在双向链表的指定位置之后插入数据

在开始编写在双向链表的指定位置插入数据的代码之前,我们首先需要考虑要传入哪些参数:

1.指定位置 LTNode* pos

2.插入的数据 LTDataType x

我们先来分析一下要想实现在双向链表的指定位置之后插入数据,会对哪些节点产生影响:在指定位置pos之后插入数据会影响pos处的节点和pos->next指向的节点;

我们先对newnode节点进行修改,因为修改newnode节点不会影响到原双向链表。我们把newnode的prev指针指向pos处的节点,再把newnode的next指针指向pos的后一个节点;

然后我们需要先修改pos的下一个节点,因为要是先修改pos节点,那么将无法找到pos的下一个节点。所以我们把pos的下一个节点的prev指针指向newnode,再把pos节点的next指针指向newnode;

我们再来考虑一下特殊情况:假设pos的位置是原双向链表的尾节点,此时我们能不能直接调用尾插的方法呢?答案是否定的,因为尾插需要使用的参数是phead,但是我们在该函数中并没有传入phead。我们将这个条件直接带入到我们之前的思路里面,发现我们之前的思路也满足该特殊情况,所以代码不用做任何增加或者修改

所以据此我们可以写出代码如下:

//在pos位置之后插⼊数据
void LTInsert(LTNode* pos, LTDataType x)
{
	assert(pos);
	LTNode* newnode = LTBuyNode(x);
	newnode->next = pos->next;
	newnode->prev = pos;

	pos->next->prev = newnode;
	pos->next = newnode;
}

我们来测试一下:

void ListTest01()
{
	LTNode* plist = NULL;
	LTInit(&plist);
	LTPushFront(plist, 1);
	LTPushFront(plist, 2);
	LTPushFront(plist, 3);
	LTPushFront(plist, 4);
	LTNode* find = LTFind(plist, 3);
	LTInsert(find, 666);
	LTPrint(plist);
}
int main(void)
{
	ListTest01();
	return 0;
}

代码成功运行,编写成功

删除指定位置的节点

要想删除指定位置的节点,我们只需要传入指定的位置pos

我们首先需要保证pos处的数据不为空,pos理论上来说不能为phead,但是没有参数phead,无法增加校验,故忽略

我们先思考一下要想删除指定位置的节点会影响到哪些节点:

1.pos的前一个节点

2.pos的后一个节点

我们需要把pos前一个节点的next指针指向pos的后一个节点,再把pos的后一个节点的prev指针指向pos的前一个节点,此时可以直接释放掉pos节点,不会对链表产生影响;

据此我们可以写出代码如下:

//删除pos节点
void LTErase(LTNode* pos)
{
	assert(pos);
	pos->next->prev = pos->prev;
	pos->prev->next = pos->next;
	free(pos);
	pos = NULL;
}

我们来测试一下代码:

void ListTest01()
{
	LTNode* plist = NULL;
	LTInit(&plist);
	LTPushFront(plist, 1);
	LTPushFront(plist, 2);
	LTPushFront(plist, 3);
	LTPushFront(plist, 4);
	LTPrint(plist);
	LTNode* find = LTFind(plist, 3);
	LTErase(find, 666);
	LTPrint(plist);
}
int main(void)
{
	ListTest01();
	return 0;
}

代码成功运行,编写成功

销毁链表

销毁链表仅需要传入头节点(LTNode* phead)就行

我们先定义一个变量pcur用于遍历链表,再创建一个变量next用于存储pcur的下一个节点,以免pcur找不到后面的节点,然后我们从第一个有效节点处开始逐一向下销毁链表,直到销毁到哨兵位时跳出循环,然后销毁哨兵位;

据此我们可以写出代码如下:

//销毁链表
void LTDestroy(LTNode* phead)
{
	assert(phead);
	LTNode* pcur = phead->next;
	while (pcur != phead)
	{
		LTNode* next = pcur->next;
		free(pcur);
		pcur = next;
	}
	//此时pcur指向phead,销毁phead
	free(phead);
	phead = NULL;
}

结尾

本节我们学习了双向链表,该结构相较于单链表会更加有优势,而且实现起来相对更简单,那么有关双向链表的所有内容就到此为止了,谢谢您的浏览

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/2301_78694309/article/details/137676376

智能推荐

攻防世界_难度8_happy_puzzle_攻防世界困难模式攻略图文-程序员宅基地

文章浏览阅读645次。这个肯定是末尾的IDAT了,因为IDAT必须要满了才会开始一下个IDAT,这个明显就是末尾的IDAT了。,对应下面的create_head()代码。,对应下面的create_tail()代码。不要考虑爆破,我已经试了一下,太多情况了。题目来源:UNCTF。_攻防世界困难模式攻略图文

达梦数据库的导出(备份)、导入_达梦数据库导入导出-程序员宅基地

文章浏览阅读2.9k次,点赞3次,收藏10次。偶尔会用到,记录、分享。1. 数据库导出1.1 切换到dmdba用户su - dmdba1.2 进入达梦数据库安装路径的bin目录,执行导库操作  导出语句:./dexp cwy_init/[email protected]:5236 file=cwy_init.dmp log=cwy_init_exp.log 注释:   cwy_init/init_123..._达梦数据库导入导出

js引入kindeditor富文本编辑器的使用_kindeditor.js-程序员宅基地

文章浏览阅读1.9k次。1. 在官网上下载KindEditor文件,可以删掉不需要要到的jsp,asp,asp.net和php文件夹。接着把文件夹放到项目文件目录下。2. 修改html文件,在页面引入js文件:<script type="text/javascript" src="./kindeditor/kindeditor-all.js"></script><script type="text/javascript" src="./kindeditor/lang/zh-CN.js"_kindeditor.js

STM32学习过程记录11——基于STM32G431CBU6硬件SPI+DMA的高效WS2812B控制方法-程序员宅基地

文章浏览阅读2.3k次,点赞6次,收藏14次。SPI的详情简介不必赘述。假设我们通过SPI发送0xAA,我们的数据线就会变为10101010,通过修改不同的内容,即可修改SPI中0和1的持续时间。比如0xF0即为前半周期为高电平,后半周期为低电平的状态。在SPI的通信模式中,CPHA配置会影响该实验,下图展示了不同采样位置的SPI时序图[1]。CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出。_stm32g431cbu6

计算机网络-数据链路层_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏8次。数据链路层习题自测问题1.数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在?2.数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。3.网络适配器的作用是什么?网络适配器工作在哪一层?4.数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?5.如果在数据链路层不进行帧定界,会发生什么问题?6.PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输

软件测试工程师移民加拿大_无证移民,未受过软件工程师的教育(第1部分)-程序员宅基地

文章浏览阅读587次。软件测试工程师移民加拿大 无证移民,未受过软件工程师的教育(第1部分) (Undocumented Immigrant With No Education to Software Engineer(Part 1))Before I start, I want you to please bear with me on the way I write, I have very little gen...

随便推点

Thinkpad X250 secure boot failed 启动失败问题解决_安装完系统提示secureboot failure-程序员宅基地

文章浏览阅读304次。Thinkpad X250笔记本电脑,装的是FreeBSD,进入BIOS修改虚拟化配置(其后可能是误设置了安全开机),保存退出后系统无法启动,显示:secure boot failed ,把自己惊出一身冷汗,因为这台笔记本刚好还没开始做备份.....根据错误提示,到bios里面去找相关配置,在Security里面找到了Secure Boot选项,发现果然被设置为Enabled,将其修改为Disabled ,再开机,终于正常启动了。_安装完系统提示secureboot failure

C++如何做字符串分割(5种方法)_c++ 字符串分割-程序员宅基地

文章浏览阅读10w+次,点赞93次,收藏352次。1、用strtok函数进行字符串分割原型: char *strtok(char *str, const char *delim);功能:分解字符串为一组字符串。参数说明:str为要分解的字符串,delim为分隔符字符串。返回值:从str开头开始的一个个被分割的串。当没有被分割的串时则返回NULL。其它:strtok函数线程不安全,可以使用strtok_r替代。示例://借助strtok实现split#include <string.h>#include <stdio.h&_c++ 字符串分割

2013第四届蓝桥杯 C/C++本科A组 真题答案解析_2013年第四届c a组蓝桥杯省赛真题解答-程序员宅基地

文章浏览阅读2.3k次。1 .高斯日记 大数学家高斯有个好习惯:无论如何都要记日记。他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210后来人们知道,那个整数就是日期,它表示那一天是高斯出生后的第几天。这或许也是个好习惯,它时时刻刻提醒着主人:日子又过去一天,还有多少时光可以用于浪费呢?高斯出生于:1777年4月30日。在高斯发现的一个重要定理的日记_2013年第四届c a组蓝桥杯省赛真题解答

基于供需算法优化的核极限学习机(KELM)分类算法-程序员宅基地

文章浏览阅读851次,点赞17次,收藏22次。摘要:本文利用供需算法对核极限学习机(KELM)进行优化,并用于分类。

metasploitable2渗透测试_metasploitable2怎么进入-程序员宅基地

文章浏览阅读1.1k次。一、系统弱密码登录1、在kali上执行命令行telnet 192.168.26.1292、Login和password都输入msfadmin3、登录成功,进入系统4、测试如下:二、MySQL弱密码登录:1、在kali上执行mysql –h 192.168.26.129 –u root2、登录成功,进入MySQL系统3、测试效果:三、PostgreSQL弱密码登录1、在Kali上执行psql -h 192.168.26.129 –U post..._metasploitable2怎么进入

Python学习之路:从入门到精通的指南_python人工智能开发从入门到精通pdf-程序员宅基地

文章浏览阅读257次。本文将为初学者提供Python学习的详细指南,从Python的历史、基础语法和数据类型到面向对象编程、模块和库的使用。通过本文,您将能够掌握Python编程的核心概念,为今后的编程学习和实践打下坚实基础。_python人工智能开发从入门到精通pdf

推荐文章

热门文章

相关标签